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ABSTRACT

Expressions for the spatial covariance of the scattered scalar
field are presented. The scatterer is a randomly rough pressure-
release surface with either Gaussian or Pierson-Stacy wavenumber
spectrum.

Three different models are presented: the Standard Model,
which utilizes the Helmholtz-Kirchhoff integral as a starting point
and uses an integration-by-parts technique to compute the random
normal gradient; the Slope-Operator Model, developed using the
Fresnel and Fraunhofer phase approximation, begins with a double-
layer potential integral and relies on an operator to compute the
dot product of the random normal gradient. Finally, the Composite-
Roughness Model, which in essence merges perturbation techniques
with the tangent plane formulations of the scattering integral is
considered. This last model is presented using the Slope-Operator as
well as the integration-by-parts technique. The models are applied

to the prediction of scattering strength and coherence so that

qualitative comparisons can be made.
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OF SYMBOLS (Continued)

difference coordinates vector
Rayleigh parameter
center-of-mass coordinates vector

constants related to composite-roughness
model 3.64

distance from a point on ensonified surface

to source

distance from a point on ensonified surface

to receiver 1 and 2 respectively

parameter of the directional ocean spectrum

4.30

vector with components a,f

vector with components a,f
scattering strength 4.1

non-directional Pierson-Stacy ocean
spectrum

shadowing conditional probability
distribution function

time autocorrelation length

=(¥,-72)2/27,7,. Related to the high
frequency asymptote of the Standard Model
3.29

second order terms from -the expansion of
the exponential involving the
autocorrelation function in the Standard
Model

heaviside function and autocorrelation
group velocity
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LIST OF SYMBOLS (Continued)

U semimajor axis of the ensonified area 2.6
v autocorrelation phase velocity

v semininor axis of the ensonified area 2.6
W(x) surface elevation spectrum

x difference coordinate perpendicular to

source normal

x center-of-mass coordinate perpendicular to
source normal

y difference coordinate parallel to source
normal

; center-of-mass coordinate parallel to
source normal

z,2 component orthogonal to r, r' in the Method

of Small Perturbation

nan e o an

II. Greek Symbols

ay - cosf,cosé,
a, = - cosf,cosé,

a - a1 ‘az

(a,+a;)/2
B, - cosf-§,
B, - cosf-§,

2] = B, -8,

B = (B1+82)/2

sinf+sind,
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vz = sinf+sind, b,

Yo Vvertical component of k, 1.7

.'l
th
" 2 2 172 by
e T = (K2 (Eot0)?) 1.10 i
) 1/2 o
N v = (k- (§otx’)?) 1.11
N 1., complex degree of coherence :S
) T =GO+ v)/(2v, 1) i
‘ LSRR ", ﬁﬂ
¥ e
1‘iJ second order moment. When imj it is covariance, otherwise '
W it represents intensity. bay
I U
it J
4 §, = +cosé,sing, !
0 4
3
:% §, = +cosf,sing, b
X € - "
A \]
It
& €2 = o o
¥ S’
P ¢'+,0''+ random variable describing the surface in double and 0t
- triple prime coordinates B
. ¥
g: §, bg source grazing angle (see Fig. 2) g'
‘: R X
E: 4, polar angle of r, 3
l‘ P
‘ g, polar angle of r, -
;: e argument of £(8) symbolizing geometrical functional Y
P dependence Yoyt
0 3
:5 K radial component of surface spectrum wavenumber '
KL cutoff surface spectrum wavenumber ;k
; 3 J
.S £s horizontal component of ks in the Method of Small i
y Perturbation ’4
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Fachas.
L.
o rms height of surface 'l‘::
|.¢
oL rms height of large scale surface ;;-3::
AL,
0’ g0y rms slope of large scale surface v
) .;.
DX range of integration representing the ensonified uj)y
portion of the scattering surface in TPM theory. :vﬁ
Range of integration in the MSP ‘
"c O‘
T Slope-Operator Y ]
Ny
é, azimuthal angle of r, ::::::
‘l. !
1
¢, azimuthal angle of r, ;o:'::
'
(NN 4
¢(r,r'*) Green’s Function 2.1 q
,.
Ay
® Aperture. Source beamwidth ? !
X surface wave vector in cartesian coordinates, with o
components xy, Xy ANy
Y w(r' ') surface dipole distribution S
w
] . t
w(C',0) surface bivariate probability distribution "‘-
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INTRODUCTION

The purpose of this study is to develop an expression for the

? spatial covariance for the scattered radiation when a randomly rough
)

g " surface acts as a scatterer. Several properties of the covariance

W

W suggest some of the reasons for the development of such an

expression. Some of these properties include the following:

i 1. The normalized covariance is the optimum test of

¥

‘4

h similarity between a pair of field points by the least-

. squares criterion.

2

)g 2. The covariance is the Fourier transform pair of the power
4 .'

W

Q‘ spectrum density.

~ 3. It responds to field fluctuations.

4

é 4, It is less sensitive to inhomogeneities in the propagating
)

2/ medium when compared to the intensity.

5. If the covariance is only a function of coordinate

- -
-

o)

differences, then it follows that there is a uniquely

determined fictitious incoherent source, which if placed

" at infinity, would produce the same coherence across the

ensonified scatterer.

i: 6 The correlation function obeys two Helmholtz equations .
(two wave equations when the disturbance time difference N
! R
- at each receiver is larger than the coherence time) since -:‘
) e
l‘
: : . o
& both the field disturbance as well as the correlation o
’l

5= et
S

&
Qf

«

-
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between these disturbancers propagate in the form of waves

(1, p. 532).
7. It will enable the computation of the complex degree of
coherence.
LTI
2 Bl (L)
£y

where the spatial covariance is r:z = <p(x,)p*(r;)>
and the intensity is Fii , 1 =1lor 2, = <p(rji)p*(ryi)>

Thus, this study presents a useful tool in the study of field
fluctuations, source localization, and the determination of some
physical properties of the scattering surface.

Since Issakovitch (2), Eckart (3), and Rice (4) published their
formulations of the intensity of the scattered field some 35 years
ago, a considerable number of researchers have made improvements or
discussed particulars of the two basic methods that the above-
mentioned researchers developed. The two methods are the Tangent-
Plane method (or Helmholtz-Kirchhoff diffraction integral) and the
Method of Small Perturbations. These have surface-roughness ranges
of validity that hardly overlap.

Several alternative models have been proposed, among them the
Composite-Roughness Model (5,6,7) which in essence merges the above-

mentioned methods by applying the Kirchhoff method and the
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perturbation method to the range in which they are valid. :his
method assumes that the height spectrum can be partitioned, a
situation which turns out to be possible irn such cases as the sea-
surface spectrum. Most of the work in this area done by the
acoustics community concerns the sea surface or the sea floor which
are assumed to have near-Gaussian roughness distributions, so that

most studies involve ideal pressure-release or rigid Gaussian

surfaces. The problem of multiple scatter, realistic boundary
: conditions, surface movement, etc., can make computations
exceedingly difficult so it has been customary to present these
) problems somewhat isolated for the purpose of study.

At present, interest exists in the development of correlation
and higher-order moments so that inhomogeneities and fluctuations of
\ the field scattered by the rough surface can be studied. So far in
( the acoustics literature, one finds relatively few studies on
b correlation and coherence, most of them being experimental
(8,9,10,11,12). Among the theoreticzl, Bass and Fuks present in
their monograph (13) a comprehensive but general discussion on field
fluctuations; Clay and Medwin (14) develop approximate expressions
for spatial and temporal correlation involving Gaussian surfaces and

include the case of a moving surface autocorrelation function.

Gulin (15,9,10) uses the Method of Small Perturbations and Parkins
(16) arrives at an expression for spatial and temporal correlation

using the Neumann-Pierson wave spectrum. Kinney and Clay (17) use

NIy isy S



the facct-ensemble method to compare with laboratory data and
Eckart’s theory.

Three methods are presented in this study. The Method of Small
Perturbations (MSP), the Tangent Plane Method (TPM), and the
Composite-Roughness Model (CRM). The MSP is presented for

completeness and to emphasize its simplicity and the lack of the

7T T VS SO X TEEROOT

a3
»

need to revert to the Kirchhoff approximation. MSP is useful when
the surface features are small compared to the source wavelength.
It relies on a small parameter expansion (the roughness parameter)
of the surface to translate the boundary conditions on the rough
surface to the (flat) mean-value plane.

The TPM is presented in two different ways: the Standard Model
and the Slope-Operator Model. Both use the Kirchhoff approximation
and have the same validity range - the small source wavelength limit
- and require that the surface slope change slowly. The standard

model begins with the Helmholtz integral and relies on an

integration-by-parts procedure in order to eliminate the dependence

LAYy

of the resulting integral on the surface slope terms. The angular

PR A oy
5 %
2

4
w5

dependence is expressed as a function and is taken as nearly

e

constant so that it can be removed from the integral. This model

P

2o Sul

requires the receiver angles be always very close to the specular

'(-

direction.

o

The Slope-Operator model begins with the first term in the
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iterative solution to the double-layer potential integral. It uses
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Gaussian properties and analyticity in the surface autocorrelation
|

k!
; to change the order of averaging and differentiation in a systematic hb?
way, so that the end result is an operator that when applied to the ﬁﬁa

B0
autocorrelation provides the integral with slope corrections. ‘a
Lastly, the CRM begins with the usual Helmholtz integral. The ‘bs
surface autocorrelation is split into a part corresponding to the ::?:EE
Lol
large-scale surface contribution to which the standard method .!?;
applies, and a part from the small-scale surface contribution on %%ﬁ
which the MSP works well. The problem is that not all naturally sdﬁ
occurring surfaces can be split into two roughness regimes. Another ’
v
problem had been the choice of the cut-off surface wavenumber, but z:q;
i the implementation of diffractive corrections circumvented (7) ﬂi&
o

adequately the problem and improved the wmodel’s behavior. In this ”iﬁ
study the Fraunhofer phase approximation will be employed for the Saif

CRM and the diffractive corrections will be implemented. EE:

o
This study presents expressions for the covariance and B

intensity using the Composite Roughness theory, and two formulations . N
of the Tangent Plane Theory. The surfaces in question are ‘??t
stationary Gaussian pressure-release with either Gaussian or Pierson b“}
(18) ocean spectrum. Expressions for the mirror-like surface ?¥~:
o

scatter are developed as well so that the coherent and incoherent aél

'

components may be studied separately. Table 1 provides the reader

with an aid in understanding the organization of this study. The

--
. oyt

------
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Table 1. Diagram of the organization of this study.
In parentheses is the section in which the covariance

for each model is first discussed.

METHODS
| | |
METHOD OF SMALL ™ ey ”
X PERTURBATION TANGENT PLANE COMPOSITE-R0UGHNESS "
N METHOD MODEL !

1
CONVENTIONAL WITH DIFFBACTIVE

I CORRECTIONS -
(3.¢.3) "l

"y

STANDARD sLopE i
N 18P OPERATOR ,q:
o (3.¢.2.a)  (3.6.2.b)

! 4
; 0
iy | | ) e
’ STANDARD MODEL ] ,
. (INTEGRATION BY ] ! N
PARTS. 1BP) SLOPE-OPERATOR _3 _ _2 N
: MODEL MODEL dn " 3z Yt
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PHASE APFROX. PHASE APPROX. R
. (3.3.3.a) (3.3.3.a) "
10 (1
.. N
::. v
' )
" GAUSSTAN n
[ SPECTRUM OF GAUSSIAN SURFACES FLAT
' OCEAN (PIERSON SPECTRUM)
]
A
. SCATTERING STRENGTH )
C - - N - .
‘.ul' QUANTITIES COMPUTED AND DISPLAYED { gongaiiic,sreoion “.‘
{
f a LA
N )
" -
" a0
I~ 3
N "~
h f, \
A \
3 p
i 2
(
1}
. N

-
» 3
o d
.

=

L™y

o

&

-'\“
. . . - . - EPREN EF - - P PR LI L] - " a" S I PR N I ] -’-n--\-\’\.\_'v ¥
VLS N SRR LSRN 8 SR LA RN S AR R s : " T I, T L R G A A ALY OO




Lot gtF e e pYR 0 h P a0 g i g0 4" 920 0.0 7ot Bot Va "B Pat Sal tat Sat Yo ¥ ol q€r R0 At mi a0 ph AV R gl gy g0 Ry gy AV plg AV bty 880 Sita $%0 82 472 884 'R &' YY) i‘..‘

05/
s{:ﬂ;

.."..l

i

[ )

7 '.[."‘

et

o
"l'::i'
i

hhy

._.ﬂl"

table provides the equation numbers in parenthesis which correspond ;2_
!
to each model. The intensity provides information about the surface 3 X
t

r
elevation, while the covariance is more sensitive to surface :hj
Y
spectrum and source position.

NN

The perturbation approach is presented in the first chapter. It

%

The analysis illustrates the fact that this method applies to !ffd
surfaces with small crest-to-trough elevation amplitudes but poses f‘f'
o

no restrictions to the steepness of the surface slope. Further, it §§$
supposes that the rough surface introduces "fuzziness" to the :.::3::':.:3
scattered sound beam. This is in contrast to the tangent-plane Sk
method, which proposes that the incident wave suffers Dali-like 9%3
distortion once it impinges on the scatterer. éﬁéf
A survey of solutions to the Exterior Dirichlet Problem is L
included in order to emphasize that in TPM there are several ?&;
alternatives in the formulation of the departing scattering ?Fﬁ;
i integral. The Helmholtz-Kirchhoff integral lends itself to the P

integration-by-parts procedure on which the Standard Method is

based. The Double-Layer Potential Integral lends itself to the

slope-operator procedure. The latter integral leads naturally to a
' recipe for the study of multiply-scattered radiation problems.

The survey suggests the TPM is a solution in the geometrical
acoustics frequency/roughness regime. Further, the Kirchhoff
approximation is required, hence the surface may have large crest-

to-trough amplitudes but gently changing slope. Lastly, the surface
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must be at least twice di:ferentiable and the solution to the
scattering integral must satisfy Sommerfeld's radiation conditions.

Chapters 4 and 5 illustrate the scattering strength and
coherence predictions of the Tangent-Plane models when a Gaussian,
flat surface, or the ocean surface is involved. It is shown that
near the specular direction the field is mainly determined by the
coherent component and that the incoherent contribution becomes
significant in the field strength predictions away from the specular
direction. The scattering is better predicted by the Slope-Operator
rather than the Standard Model since the latter model mispredicts
for angles far away from the specular direction. Shown as well is
the fact that when the normal gradient 3/3n is approximated by 3/9z,
the scattering formula will only display the coherent component of
the field. This may be adequate when the surface is mildly rough
and/or the autocorrelation lengths are very large.

The Slope-Operator Model is developed using the Fresnel and
Fraunhofer phase approximations. Qualitative comparisons are made
with regard to the behavior of the model when one or the other phase
approximation is used, which show that the Fraunhofer approximation
is adequate in the farfield. The plots for scattering strength show
that for low grazing angles the Fresnel expression consistently
predicts lower energy amplitudes as compared to the Fraunhofer
expression and the Standard Model. The Fresnel phase approximation

produces expressions for intensity and covariance with real and
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imaginary parts. The author speculates, but never proves, that the
imaginary part is less significant in the farfield and/or when both
the autocorrelation lengths are large and grazing angles small. The
coherence plots illustrate that the Standard Model and the Slope-

Operator Model predict similar results. The phase is controlled in

the farfield by the argument k(r,-r,), that is, the wavenumber times

the difference between the distances of the receivers to ensonified
surface. It is shown as well that the horizontal coherence is
insensitive to surface inhomogeneities when the random surface

fluctuations are directed in the vertical direction.
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PERTURBATION METHOD AND THE EXTERIOR DIRICHLET PROBLEM

A. THE METHOD OF SMALL PERTURBATION (MSP)
1. t P u

The method of Small Perturbation was applied by Rayleigh (19)
to determine the field scattered by periodic surfaces and
subsequently applied by such authors as Rice (20), Mandel’shtan (21)
to slightly rough random surfaces. This technique, in its simplest
form, is included here because it forms a basis for the Composite-

Roughness Model.

Following Brekhovskikh (22) closely, the randomly rough

PR

-

Gae)

‘

pressure-release surface described by z=¢(r) with mean value q’f

4

o

&H

<> = [ ¢(r)ds(r) = 0 (1.1) L

S R

T

o-'.’

R

bounds the semi-infinite region R. This region contains a source oy

oo

generating a time-harmonic pressure field. For simplicity, assume 8¢
o

the incident field to be plane waves. Further, assume that the i::

o

N

total pressure at (r,z) in R satisfies 52

Protal(¥,z,t)=Po(r,z,t)+p(r,z,t) z>¢ (1.2)

-~

[
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11
where P, is the pressure disturbance in the absence of the rough
surface. The boundary condition

Ptotal(r.f(r)'o (1.3)

is expanded in a power series about z=0. We retain only terms up to

lst order ({ is small):

4
Protal * ¢ a2z [Ptotal] 0. (1.4)

Substituting (1.4) in (1.2) and matching orders we obtain the

boundary condition at z=<{>:

Py = 0 (1.5)
p-- (2 (1.6)

The solution to the reduced wave equation subject to Dirichlet

boundary conditions is

e s i
Po(r,z)=e 80 T 170% 1702, (1.7)

2 2 2 ;;

where ko - 50 +, W

-

I‘.l

A DY

and €,°r = £,, £, is the horizontal component of k, e

A

Y0°'Z ™ -Yo, Y, 15 vertical component of k,.

-
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Substituting (1.7) in (1.6) and evaluating it z=0
P(r,0)=21v,¢ ()& 0" T (1.8)
Let A(x) be the surface spectral amplitude. It is the Fourier

Transform of ¢(r)

c(r) = [ axaGe X' T (1.9)

Utilizing this representation of ¢ (r), we obtain

- 1(€o+x) T i
p(r',z’) = 2iv, [ dxA(x)e §otx) et fvz (1.10)
2 21/2
where v = (k2-(€o+x) ") and Im{+y)>0

as the final expression for the pressure at (r,z).

2. a ova ce and Intensit

The scattered pressure at (r',z') is

p(r*,z') = 2iv, [ dx'A(x')el(fotX ) xitiy ! (1.11)

-

with ' = [k’-(€o+x')2]1/2

The covariance is the expectation
2
<pp'*> = 4y [] dxdx'<AGOA*(x')>
m:'

olbo (x-x)+ilxer-x'*r' J+ilyz-y'2") (1.12)

v

- - A A
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The range of £ and I' are determined by considering contributions
from non-attenuating waves, for which the y’s are real.
Assume the surface to be stationary so that the surface

correlation of {(r)

C(xry) = <¢(r1)¢(x)> (1.13)

depends only on the separation r; = r,-r;.

In such a case A(x) and A*(x') are delta correlated (13, p. 43)

<A(x)A*(x')> = W(x)6(x-x"), (1.14)

where

'ix'rl

W(x) = (5&33 {aer Clry)e (1.15)

is the spatial spectrum of roughness.

Substituting (1.14) in (1.12) and integrating with respect

to x’,

<pp'*> = 4y, [ dx(pet XHE) ELNI(ETZT g
z

is the covariance. When (r,z)=(r’,z’), the intensity

2
<pp*> = 4y_ [ dxiW(x) (1.17)
>

is obtained.
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3. Discussica
-é?
Equation (1.10) implies that to the first approximation each *55
D) U
Fourier component of roughness acts as a virtual source giving rise 4&?
ty!-

to its own scattered plane wave propagating in the direction (£,r),

which obeys Bragg’s Law (22, p. 177):

€ =€, + x . (1.18)

Equation (1.16) and (1.17) show that the scatter is mainly hﬁ
determined by the surface spectrum, not the height distribution, in
the regime in which this method applies. The main feature of MSP is Tg
the translation of the boundary condition on z=¢(r) to z=<{>=0 by X

means of a Taylor series expansion. This fact restricts its

applicability to wavelengths that are large compared to the 5?”
)
correlation length p of the surface (13, p. 82), or more precisely, " A

to the range

R = 2kgosinfy << 1

Rayleigh parameter
source wavenumber
rms height of the surface

grazing angle of the incident wave.
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Physically this amounts to each irregularity weakly distorting

the field incident on it, and that in the frequency range of
validity the roughness of the surface is shallow as seen by the
incident wave.

Two alternatives to the MSP will be presented next, one being
the popular "Tangent Plane Method" (TPM), which assumes that
reflection takes place at each point on the surface according to
geometric acoustics (the incoming wave sees a surface that very
gradually changes and reflects from the tangent plane at each point
of the surface). The problem with this method is that the Kirchhoff
approximation is needed to predict the field at the boundary. The
other model is a combination of the MSP and the Tangent Plane Method
and it assumes that the surface is to be considered as the
superposition of gently changing large-scale roughness with an
overriding small-scale ripple.

The MSP has been presented, for simplicity, with an incident
plane wave. However, the source could just as well generate
spherical waves and have a beam pattern. In both the Tangent Plane
method and the Composite-Roughness Models, source characterization
will play an important role in the following presentation, but this
need not be so in the general case (23).

Phenomenologically, it is interesting to note that the MSP and

the TPM differ in their prediction of the effect the scattering
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surface has on the incoming wave: MSP predicts that the incisent

wave becomes "fuzzy" or diffuse on reflection whereas TPM predicts a

scattered field as a superposition of sharp images of the incident
wave producing a "distorted" but well outlined incident wave. The
composite-roughness result is a combination of both effects.

B. THE EXTERIOR DIRICHLET PROBLEM

1. Statement of the Problem

The total acoustic pressure at r in a semi-infinite region R of

isotropic media will be assumed to be the point-wise superposition

Ptotal(r,t)=Po(r,t)+p(r,t), (1.20)
where P, and p are the contributions from the source at r’ and the

boundary respectively (see Fig. 1). Our attention ce.ters on the

scattered field p, which in the time-harmonic case obeys

(A+k2)p(r)e-iwt - 0 in R (1.21)

the reduced wave equation, with Dirichlet beundary condition on the

randomly rough interface

p(x")=0 " € S" (1.22)
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and Sommerfeld’s Radiation condrtions (24, p. 429)
- I
[ar lk]p(r) 0 [lrl (1.23)

as |r|{ - o, which guarantees no contribution from regions infinitely
far away. This problem is known as the Exterior Dirichlet Problem.
2. Solutions-Survey

The double-layer potential integral (25, 26)

p(r) = [ %(r")n"-v"4(r,r")ds" e J (1.24)
z r € R

is known to be a solution. With } the portion of the surface S"

illuminated by the source,

P(r") a (unknown) surface dipole distribution and

ik|z-2"| ,
$(xr,c") = 1 e '~ ~ ' is the Fundamental Green’'s

4n lr-x" | Function with

w
k = ; the source wave number

The double-layer potential with continuous density 3 is a
solution to the Exterior Dirichlet Problem (1.21) (1.22), provided v

is a solution of the integral equation

2p(r) = p(r)+2 [ Y(r")n"+v"¢(r,r")ds" when r € ) (1.25)
z and r" = r .

This equation, in turn, has a solution if the surface belongs

to a class of Lyapunov surfaces (27) and if the density ¥ is bounded

everywhere on . One important implication of this restriction is

4
(4 rf 24
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that the correlation function must be analytic, and secondly the

function ¢(r'') describing the surface must be Holder continuous

(28).

-~

Both p and ¥ are unknown on the surface, but an approximate

expression for the pressure for points on the surface is

p(xr) = -Py(r) r € }, (1.26)
which is commonly known as the geometrical optics approximation (or
one of the Kirchhoff approximations) because it is only
approximately true for k|r-r"{>>1 -- the high frequency regime --.
The physical intepretation of (1.26) is that at points corresponding
to the surface, the field equals the incident pressure at those
points in the absence of the surface. Further, when r is on the
. surface S", but not in X, the pressure is zero at r. Thus
specifying that shadows be infinitely sharp.

Substituting (1.26) in (1.25) and performing the iteration

d)(rez)-’l’o‘.’wl +¢2...¢m...

LR LK

kYN

where Yo(r) = - 2 Po(TEX) recz
¥1(r) = - 2 [ ¥o(xy)n, v, 4(r,r,)dS, r,€ %,
Z1
Yp(r) = - 2 ¥y q (T)n 2T é(x. 1 )dS_ r € In
Zn
(1.27)
o
W
o
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Retc-ining only the first two terms in (1.27) and substituting in

(1.24)
p(r) = - 2 [ Po(r")n"+V"¢(r,r")ds"
z

v 4 £ { £ Po(r:);:-V:¢(r,r:)dSI“} n"ev"$(r,r")ds" - ...  (1.28)

The first order contribution is recognized as the Rayleigh
Diffraction Integral. Equation (1.28) states that the field at r is
a linear combination of n-order multiple scatter terms. The first
term represents the singly scattered contribution since the
integration over I means that the contribution of every point r" is
summed coherently to yield the first-order contribution. The
second, that part of the disturbance at points r" in Z,, reradiates
in the direction of r" in X, so that the second order contribution
to the pressure at r is the integral over £ of the coherent sum in =
of the reradiation to every point r". Higher order terms in (1.28)
represent even more complicated reradiation contributions. This
method is particularly well suited for the study of multiple
scattering, especially since iteration and superposition are in
principle relatively easy to implement on a computer.

In principle it is also possible to formulate the solution to
(1.21 and 1.22) by the use of a Single Layer (29) or Simple Source

Distribution Integral
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p(r) = [ ¥(r")¢g(r,r")dS" in R, r" € S". (1.29)
)

Equation (1.29) is a solution to the Exterior Dirichlet Problem

in question, provided ¥ is a solution to the homogeneous integral

equation

[ w(x")¢g(r,x")ds" = 0 . (1.30)
z

The task would be to find ¢5 which is identically zero at the
randomly rough boundary and that satisfies radiation conditions.
This makes this formulation very unattractive and will not be
discussed further.

Finally, we address the Helmholtz Integral formulation for the

scattered field

p(r) - f { ¢(r't")nll.vnp(r") _P(r")n".v"¢(r'r“)} ds" rll E 2
b r €R

]

(1.31)

This is the most frequent starting point for authors discussing
the Tangent Plane Method. The formula may be derived using the
divergence theorem and Green'’s identities (30, p. 803; 24, p. 40).

Equation (1.31) requires that the pressure and its normal
derivative at each point of the surface be known. For a randomly
rough surface this can only be determined approximately, for

example, invoking the Kirchhoff approximations,
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| p(r") = - Po(r") (1.32)
; n"eV"p(r") = 2n"-V"P, (r") (1.33)
P
)

part of which was used in connection with the dipole layer

formulation. If these approximations are made, (1.31) is

transformed into

p(r) =2 [ % (Pod)ds", (1.34)
b

4 Py and ¢ are the doubly differentiable incident pressure and the
Fundamental Green's Function respectively, n" is the outward normal
of the randomly rough surface. This formulation could incorporate

multiple scattering if the full integral equation that leads to the

TR

Kirchhoff approximations were implemented (29).

Alternatively, ¢y can be chosen to be the solution of
(V2 + k2)gp(r, ") = - §(r-r") (1.35)

which vanishes at the flat surface z=0. Under this condition (1.31)

is

p(r) = - f p(t")%; dh(xr,x")|dsS" (1.36)
z z=0

The solution of (1.36) is arrived at by first making a Taylor

‘
.

.
B
.

2

A
o

series expansion for small o, the rms height of the surface, much
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rough surface back to the surface z=0.

This technique is limited to

wavelengths much greater than ¢ but does not rely on the Kirchhoff

approximations.

3. Discussjon

The previous section enumerates some of the less esoteric

formulations of the solution to the Exterior Dirichlet Problem.

Each one of these is used as a starting point for the development of

different formulations of the TPM.

Equation (1.34) and the first

term of (1.28) (it is assumed that multiple scatter does not

significantly perturb the scattered field) will be developed further

in the next chapter.

They both incorporate the Kirchhoff

approximations, but differ in their starting points as well as in

the evaluation of the quantity n + k and the phase in the

exponential. Since Kirchhoff'’'s approximations are invoked,

diffraction shall be ignored.

Thus, surfaces to which the Tangent

Plane Method applies may have large crest to trough differences, but

slope changes must occur very gradually.

Furthermore, it is assumed

that the source sees every point on Z.

Otherwise, (1.32) and

(1.26) are replaced by

p(r") = -S(r")Py,(x")

where S is a shadowing conditional probability function (31) that

depends on the source depression angle as well as the height and

s, ", ®
WA,
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slopes of the surface. It is clear that this factor becomes more i
important for smaller source depression angles, but in this work we

shall assume it is always equal to unity.
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CHAPTER I1I

THE TANGENT PLANE METHOD

A. THE TANGENT PLANE METHOD
1. Preliminary
The starting point is the Rayleigh diffraction integral (1.28)

and the Helmholtz Integral result (1.34)

p(ry) = -2 Po(r");"-v”¢(r1,r“)d8" and (2.1)
=
p(ry) = 2 £ %;: [Po(r")¢(r1,r")] dsn . (2.2)

As illustrated in Figure 1, the source at r’' generates

spherically spreading waves, limited by the beam function D":

D"elkR

Po = R’ (2.3)

where R' = |r'+r"|
The Fundamental Green'’'s Function is

1 ik|ry-r"] _ _1 ikR1
am|r, -r"|° 4mR, © (2.4)

¢(r1 vr") -

and has a gradient with normal projection

- L " " T ) -1— l—( " "
n" « V'¢(r,r") = in « R, [1- ile] R1¢(r1,r ) where Ry = r,-r
(2.35)
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®
Assume that kR, >> 1 so that expression (2.5) can be approximated d

A A Yo &

n" . VU4(r,,r") = in"ek; $(r,,r") (2.6) -"',.:‘ o
le

Rl % |
‘.F
¥ ol

. . A
2. The Source t u o 0%

with k;, =

The use of most realistic beam patterns D in equation (2.3) .

will make the evaluation of (2.1) extremely difficult. Two

)?:

reasonable approximations for the main lobe of highly directional

l’?"\‘? ;
3
s

3
P

sources are the aperture type and the Gaussian beam pattern, both

JJ
-x*.

SN
5
e

T

absent of sidelobes. Here we assume a Gaussian source with

(r~<
AN

directivity function (32, P. 198)

i

I

&
i1 2 2n

e
LR )
S

"2 n?2
D"-exp{-[lv—,+ya;]} (2.7)

ﬁ.
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[AE AN

RIew)

v s
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2010g, e 1/2 r tan(z)

\J

where U = ———— 1is the semimajor axis AN
3 sind N
1

201o0g, ge /2
-]

r'tan(%) is the semiminor axis eyt
¢ is the half-power beamwidth

¢ is the source depression angle

so that the surface area A illuminated by the source is simply given

by
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A= ax [ dye - AUV (2.8) e
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L) 7.
aftad
Further, the source is assumed to have a narrow beamwidth so that v
it
it
the approximations ":" i
o
Fo'th %
R' = [} ."."g!
Ry = r, are valid. (2.9) "‘%}
!
e
Another convenient change that can be made on (2.1) by this ’om
\
choice of D is to change the limits of integration so that the ;ﬂf"
®
integration is performed over the whole surface. It is this Si%ﬂA
s‘!'."f
e
assumption that makes it evident that the choice of source :#;5‘
T
&G
beampattern plays an important role in the development presented ;i;ﬁ
L
here. PVt
f:‘..}-:'
3. unhofer a esnel Phase Approximations Py’
n"._lf::
Both ¢ and P, (ignoring the source function D) in (2.3) and 3“}:’
9
(2.4) represent spherically spreading waves. The phase in (2.3) and N
*
L
DA
(2.4) is found to be (see Fig. 2) Ef*
S
Y &
A
. ' : n2 ' ny2 tad wy231/2 !
ikR’' = ik([x + (r'cosf+y")* + (r'sinf-¢")*] ®
=
‘_'h{ -
ikR = ik(r,cosf,cos¢,-x")%? + (r,cosd,sing,-y")? + #Q?$
-\l-.
(r,sing, -¢m2]/% (2.10) T
4

These can be approximated, retaining the first two terms of the

binomial expansion, by
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ikR’ = ik[r’+y"cos€-§"sin9 + E%T (X"2+Y"2)] (2.11)

and
ikR = ik{rl-(cos&lcos¢1x"+cosﬂlsin¢1y"+sin01§") + E%I(x"2+y"2)].

(2.12)

In the future these two phase appear added
ik(R'4R) = ik[r;+r'+a;x"+8;y"-v,¢"] + ikP, (x"2+y"2), (2.13)
where a, = -¢; = - cosf,cos¢,
6, = - cosf,sing,
By = (cos@-§,)

¥, = sind + sind,
’
ry,+r

2r,r’

o,
S
SVYNN

This expansion is valid when r’'"? (x"2+y"2+2r’'(y"cosf#-{"sind)}

X
e

< 1 and r;z(x"2+y"2-2r1(clx"+61y"+sin0§")) < 1, which physically
implies that the source and receivers are far enough so that the
largest dimension of the insonified area is still smaller than the
source/receiver-to-surface distance. An alternative to the binomial
expansion is the replacement of R+R’ by a power series in r" about
the origin (33,34). The binomial expansion is admittedly poorer
than the series expansion, but it is considerably easier to
implement.

When the source is far away so that kR’ >> 1 then the wave

fronts of P, are locally nearly plane and P, can be approximated
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ik e(x'+xr")
. D"
P, = —-E——-ET———— (2.14)

o

i

Sogog o

SAL
!
with k' = k L, it
u r
; Similarly ¢ can be approximated if kR; >> 1 so that e
P
; y
: Y
N . 1 ik, “(x,-r") Ry
- g ¢
: ¢ 4nR, e (2.15) !
When the phases of (2.14) and (2.15) are combined, the term in f A
W
; square brackets in (2.13) is obtained. This is labeled the :}?f
4
: . R
Fraunhofer phase approximation and physically suggests the il
.®
- assumptions made on the shape of the wavefronts. When the )
RSN
oy
approximations in (2.14) and (2.15) are not made, i.e., the Sb
PN
j wavefronts are allowed to have some curvature, then at least second ﬁ\
' )
order terms must be included. When second order terms are retained, G
3 as in (2.13), the Fresnel phase approximation is being made. This ;;t‘
. -."_\
; approximation somewhat complicates computations of the moments of :f:.
the pressure and shall only be given some attention here when the :E;-
| L
l. ‘l.'.- \
i Slope-Operator Model is discussed. '"i ,
.‘ ‘.-":I !
ﬂ Before proceeding, (2.1) and (2.2) are restated incorporating ;ﬁ;
L} avu
i
the changes discussed so far: 4{,
N
\ -
, T
I r‘\..h "
-~ ik( r]_ +r ! ) @® ~ 2 1 " " n2 "2 ‘h..‘-:
: p(ry) = E——-___T_ i dS"n"-kIDelk(alx +B1y" -y CHP [x" 24y 2]) A
2mir, r
T EAAN
o\ (2.16) _:.:,:.
o .:_-_"
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ik(r1+l") @® A 'k " " _ "
pr) = S dS"n"« (k-k, )D& (X ALY EN) 5 19y
L E x s &y
with n" = X dy
agn. 2 w2 1/2
(" + & 1)

and dS" = |V¢"|dx"dy"

Equation (2.16) corresponds to the Rayleigh Diffraction Integral
expressed so that either Fraunhofer or Fresnel phase approximations
can be considered. Equation (2.17) is the Helmholtz integral result
and has the Fraunhofer phase approximation.

The evaluation of (2.1 and 2.2) shall be performed in two
different ways. One approach shall be labeled ®"Standard Model"” and
starts with (2.17). The "Slope Operator Model" uses (2.16) first,
with Fraunhofer, and later with the Fresnel phase approximation.
The latter model does not make a large grazing angle approximation
as will be the need in the Standard Model in order to permit the
evaluation involving the normal ;“.

B. DERIVATION OF THE INSTANTANEOUS AND MEAN SCATTERED PRESSURE
1. Standard Method

a. Development

This approach has been preserted with slight variants a great
many times. Among the earliest researchers to apply it to the

computation of intensity are Issakovitch (2), Eckart (3), and
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Brekhovskiki (35). Here we follow the approach presented by Tolstoy

and Clay (32) and use the geometry of Figure 2.

Using the Fraunhofer approximation,

vectors is

i (k'-k;) = - e;x + (cosb-6,)y - v,z (2.18)
with ¢, = cosf,cosg,
6, = cosb,;sing,
¥, = sinf + sind,
so that
eik(r’+r1) © w
p(r;) = - Znir's, k {D dy {w dx"D"
'k LS " _ "
(@ §"ctBy £y -y Yo T (ALK THALY T ) (2.19)

with a; = - €,

B, = (cosf-6,)

X
and y" of ¢"
The first two terms can be simplified usi

The first term gives

‘ - . .
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o
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o gy are respectively partials with respect to x"
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the difference in the wave-

ng integration by parts.
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P
2
X
\ad 3 " 3 1 a ] " " @®
kf dx“a Dnelkalx (e‘lk"llfg dx") - ._1 De"lk(alx '71g )
i X i,
-0 -
2
© . « " : " "
+ k f dx"D" a_l_ elk(alx"’ylgn) + f dx" a_ §—D— elk<a1x "Ylg )
- 1 o iy, ax"
(2.20)
. . . . ap" 0 .
Substituting the explicit form of Py and D" gives the following
result:
® 'ka [ 'k " " "
k [ dx"a,D"e DX (g HEMS ¢ dx) = 0
-0
oo Dllaz . . © dxllx"D"a ' . "
+ K f ax® L. Lk(alx"-ylg")_2k f _ 1 elk(alx'-11§ )
T - iyq0?
= F(U)+G(U) (2.21) i"

5
o

For large kU, G(U) falls off faster than F(U). By Schwarz

ol

inequality

lean| 1.
|F(U) | KU

so that G(U) is negligible if kU >> 1 is enforced. The procedure

is used to perform the y" integration, yielding

2 2 2
ik(r’+r1) @ o (al + ﬁl + 71) : " #
oy —— " " " lk(alx,'+ﬂ1y '71( ")
p(ry) 2nr T k {Qdy {wdx D n e

(2.22)
provided that kV >> 1 as well.
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Finally, substituting (2.18) in (2.22) and imposing the
restriction that changes in the incident and receiver grazing angles
be restricted to a small range so that the angular dependence may be

| removed from the integral, the final result is

ik(r'+r1 ) @® " " "
p(ry) = ik ES——r £y(0) [f Dre  (BX Y TN gy
1 -
(2.23)
where
l+sinfsind, -cosfcosd, sing,
£.(8) - (2.24)

sinf+sind,
(2.23) is valid for angles in the neighborhood of the specular
direction and kU,kV >> 1.

If the surface is flat ¢("=0 and the scattered pressure from a

flat pressure-release surface or a "mirror" is obtained:

., 1k(r’'+ry) © .
ike 1 woik(ayx"+8,y") L
Py(rL) Py £1(8) {{ D"e dx"dy (2.25)
o
b. The Mean Scattered Pressure o

v &

AL

The surfaces to be dealt with will be random stationary,
described by ¢"(x",y"). ¢"(x",y") is a sample of a stochastic process
and the scattered pressure is therefore a random quantity. The

ensemble average or "mean" pressure is

ike1k(r’+r1)

a0
" ik(a X"+B " ) - ik"' g— " N "
PE—r £,(8) [f eI TR e THES T gynay .

-0

<p(r,)> =

(2.26)
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The interchange between the expectation and integrations is possible &
. . : -ikry¢"_ . by
when there is uniform convergence. The expression <e 1875 is -’:(\:
Ml
recognized as the characteristic function of the random quantity Pt
S-n(xn'yn) .‘_,'-
A
)
:":
s d e
-ik " -ik " o
<e YN L1 deme(emye NS (2.27) NS
-0 ~
o ™
b "‘
where w({") is the probability density function of heights ¢". As a
t
special case, consider the Gaussian probability function L-F
L!-f .
Lt
-¢"2 /20 S
e b
w(e") = (2.28) ’::"
R i
2 &g
J2xo :\'
A
Substituting (2.28) in (2.27) we obtain :j_
lf-
ey
-ik " - ,_{' -
< 1Ms", _ o872 (2.29) NN
2 '\‘-‘\‘
where g is the roughness parameter, defined(*) as g = kzylcz2 SO
.'h
The mean scattered pressure for a Gaussian distributed surface is
h o
thus -"*j
N
2 2%
<p(r,)> = e 8/ Py (2.30) I
r-,v—]
R0
RS
N
* Readers familiar with acoustics literature that deals with ,.‘-:,'j
scattering from rough surfaces will recognize the quantity k2‘1202 ~‘-‘-’3
as defined by 52. In this study the square is omitted so that g
= k2202, E}‘:j
1 NN
oS
d',\‘
S
A
A




The factor e-g/2 is proportiunal to the degree of coherence in the

scattered radiation. It tends to one for mirror surfaces and to zero
as the roughness increases. It is worth noting that (2.30) implies

that the average pressure is independent of the spectral composition

of the surface.
2. Slope-Operator Model
The slope operator itself will be presented in the context of

higher order computations. Described here is the derivation of the

field using Rayleigh’s diffraction formula. The result presented here

S

will be used later when the operator is derived. This approach sgl
W

Xa,
appears a few times in the acoustics literature, notably in Welton's u$~
My o

4
A

<
<

report (25), as well as in Boyd and Deavenport’s paper (36).

o

a. Development

g

ot
00

The dot product in eq. (2.16) has components

~ oW

-
T
LY

(n"+k; )i = E% (rye;-x")C, (2.31)

(n"+ky)j = E%(r161-y")§y (2.32)

q.

(n"ek ), = E%(rlsinol-g")(-l) : (2.33)

PR
z?sﬁy

Let: vi = alx:v+ﬁ1ylt_,11§-n+Px[x|12+yn2]

{?
s, 2

;an,

¢

Equation (2.16) is therefore
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® © k" -
" " _D_"L_ f\‘.i'
[ ax" [ ay R, iy
-0

eik(r1+r’)k

piry)= 2rir, ' -

x {(rlel-x")§x+(r161-y")cy-(rlsinol-g")) (2.34)
Rearranging e

'}.

ik(ry+r’) © iko" b
e ‘k » " Dne " n- . _}.\ .

plry) = S j£ dx"dy" SpF (g0 +61C -sindy) :

" " n " " II\',
[T axvays Droiken (TSI PACAT] (2.35) Ef"‘i
X R, T, T

-

®
The second term can be ignored if the beam is sufficiently narrow so I

v
that x"<<r, and y"<<r,. Further, note that this term is of order r;”! R

smaller than the first term. Thus,

ik(r,+r'), o)
. k 1k o
p(ry) = & T II pre (10,6 -sind; )dx"dy". (2.36) N

-0

[
The pressure reflected by a plane pressure-release surface is B

55

obtained by letting ¢ approach zero:

~

ike1k(r1+r )

-7 (".f
25

3 © 3 ] " "2 "2
Py(r,) = sinfdy [p pegik(a X" HA1Y 4P [x"H4Y"2]) 4o

-0

2rr,r’ dy

b\
L

(2.37)

In the farfield the Fraunhofer approximation applies, thus

P, [x"2+y"2}=0. Attention to the matter of phase approximations shall -

. RS
be left to later sections. .
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b. The Mean Scattered Pressure ﬂt?'

: . . L")
Again, assume uniform convergence so that the expectation and ag ]

o
.l..

spatial integration operations may be exchanged. Thus, vey

‘. ’I‘
fk(r,+r') 3
ihe—l—_ " ik x"+ "+P x"2+ n?2 ~ :.
<p(ry)> = 2nr, 1’ [f D"sind e (ayx"+B,y"+Py [ y 2D ;
-

-

—— - " " \\
sind, ~ sind, ] >dx"dy (2.38) o

When ¢" is statistically stationa then the average can be
y ry B

separated from the integrations in x" and y" (25)

LJ " '.::::':l

§.¢
ikyyen (LSS
<pir)> = < NN (LB LA ) opy (2.39)

: . . o~ 3
For the special case of Gaussian random process with zero mean Yy

e.
height and slopes, (2.39) yields

ey
EAAL

s
[y

<p(r,)> = e'g/ZPM (2.40)

?

.
N

as before.

&
AR
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a a_ a

v

3. Discussion

]

A

So far the matter of evaluating the dot product involving n"

.
o
S

- ¥

bd

‘.r.v
.
R
A

has been illustrated. The results in sections 1 and 2 differ in the

v
",

h]

evaluation of the dot product because the integrals were different to

5§\
A

begin with. These discrepancies are apparent when comparing (2.26)

....
A
("

and (2.38) as well as the plane pressure release results.
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Some authors choo.e to approximate the average of the random
vector ;" by the ; coordinate unit vector (3) when the slopes are
gently changing and have zero mean value on surfaces for which the
Tangent Plane Method applies. The slope corrections are increasingly
important at lower grazing angles, far from the specular direction,

: and/or when the height surface spectrum content is high. 1In the

Standard approach the approximation is reasonable since the model only

R applies to the neighborhood of the specular direction, but it is a
severe restriction for the Slope-Operator Model since it is valid for

a larger range of grazing angles and incorporates slope corrections,
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CHAPTER III
SPATIAL COVARIANCE AND INTENSITY

The general expressions for covariance <p(r1)p*(rp)> and
intensity <p(r)p*(r)> for the scattered pressure involving surfaces
with stationary Gaussian height distributions will be presented using
the Standard Slope-Operator and Composite-Roughness models.

A. STANDARD MODEL
1. Formulation

Using (2.23) with (2.24), the pressure at r, is

c lk(r'+r,) © . L o .
p(r;) = ike fz(e)ffD"'elk(azx B2y 2 )dx"'dy"'
~ Q0

'
2nr rz

(3.1)

l+sinfsind, -cosfcosb,sing,

v

£,(8) = (3.2)

sinf+sind, -

s _B & ° -
Py by

\ v
S A SIS

Hence, the spatial covariance is

Pd

>
",

ik(xr, -ry)

k2f, (8)f,(8)e
Pr)PH(E)>=< — s Jiy oo
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As usual < > means ensemble average and * means conjugate. For

AL
N R X

>
>

brevity the symbol T,, shall replace <p(r,)p*(r,)>, the covariance,

e le

N oh
<
y T

o

and Ty, or I, for the intensity at r;, and r, respectively.

‘ Expediency in computations is improved by changing coordinates to

.
7 2
i r

b

center-of-mass and difference coordinates. Let

".
4
-

.‘,‘,’._:,.
1 @&

7 - x";x"' 7 - z";x"'

o
[

and

«,
NPy

'I‘l'/ﬂ_;v

ERr
.

4,

) K o= Xt et y = yr-yr

A A

Thus r, = xi+yj

x_1 w
{3

’
Z0je

U,
2

&

A A

R, = Xi+yj

X
é

e

E 8
]
AN

.

P
Y %at
e
«

I(x ,xr ) ay'», y )
= = 1 and -
a(X.x) 3(}’:}’)

«

% N

Since

= 1 then

o oy

o ‘.r‘t
7
SO

dx'*dy’rdx’ ' dy' = dxdxdydy

. S % % Y
:’;Rﬂf
IR

s

| Let dr, = dxdy

53,
F a4

LM
e

dR, = dxdy

AN
x s
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5

a, +a, B1+8;
2 B3

Finally, let a =

i
2

(3
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-
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! a = a) -a, 5'/51')32 g
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A A

so that s = gi+gj

Ao o

s = gi+f] )

’\

Assuming uniform convergence, the expectation is taken inside the A

integral in (3.3). We adopt the changes in coordinates and notation

to get

k’fl(e)fz(e)elk(rl-rz) @ @ )
Fyp = 4m2r'2r, 1, f dr; f dR; DD

-0 - v

eik(Rl's+rl'§) .

<o B G fr )y (3.4) NS

- %2 v2
where D - exp(—Z[K— + z"])
Uz y2

2 2
D = exp(- 215 + )
Uz V2

The expression in angular brackets is recognized as the
characteristic function of the bivariate probability distribution

function w of the surface, defined as

<e'ik(71§"‘7z§"')> - f de - f dg'--w(g-',g"')e'ik(71§"-725"').

-0 -0
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Since it is assumed that the surface is (aussian in distribution,

X

-

homogeneous and stationary, the characteristic is computed by first

[

-~
o -

~

expanding (3.5) in a Maclaurin series:

'

<1 &

ik . Vs k2 2 2
<o k(8 -72¢ )>.<1-1( R TE & FUSRREY A PE PY S S o Y S R i%T( )

S35

-

k* 4 3 2 2 3 "
+ " [11y. B 4_4,11),. B 3.72§, f .+671y- ' 2.’2g. N ,2_Q71§. S 4 ' 3+72y, ' 4] >

Ll

(3.6)

L
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Following this, the expectation is computed term by term:

s

X )

LYy 4

A
.

<eik(71§"‘7z§"')

a_»_»
0"

A

k? 2, 2 2
> =1 - 57 (9,02-2717,0%Cy,0%)

el

‘e >

7

k* 4 3 2 2., 3 4
* (3710“-1271720kC+18717206C -12717204C+37106)...

ﬂf{?ﬂﬂff
2 A

2 2
v+
= 1-kZ%02

v+ o 2
k4ot 1 2
-21172C] + 2 L—TY——'-27172C]

2+ 2
nrr
e IMT (3.7)

e
«® -
-

ll"

(4
e

where G = k20%y;7,.

If y,=v, then G=g defined previously.

l.""
l.'

‘2
»
‘-’5

g = <¢?(r;)> 1is the rms height

T ®

,'.'." A
l,l, ,ll‘ L

C = C(x,y) 1is the surface autocorrelation.
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Substituting (3.7) in (3.4)

2 ik(rl'rz)_ —
k2, (8)f,(8)e A N ik(r, s) GC(r,)
r - [ dr;De e
12 4n3r'?r,r,

-0

« [ ar Delk(RL™S) (3.8)

-0

2 2
71+ 7,
with ' s G
2717,

The integration in R, can be performed. From integral tables (37, p.

65.6A)

© ik(R; "s)
J dR De - % e

-0

k?
- _.5(02[]2+ﬁ2vz)
(3.9)

since A = xUV

Thus

k?

. - E(arveprve)
2 - -
Ak £, (0)f, (@yetK(TiT ) 8

r
12

2p12
8x2r'?r,r,

® -
[ dr,petk(FL®) 00(x)

-

(3.10)

2. Surface Autocorrelation

a. Gaussian Autocorrelation

The auteccorrelation in this case is known to be (38)
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¥

C(x,y) = exp L2 (3.11)
2

Hr‘N |><

where L,, L, are the surface autocorrelation lengths

The exponent involving the autocorrelation is expanded in a

series

(3.12)

and substituted in (3.10). The summation and integration

operations can be interchanged, provided the series is absolutely

convergent, so that

k2
I- %5(a?U2442V?) = m

Ak2E, (8) £, (8)e K(F17T2)g ) g;.
Fa 8xr'°r,r, m=o
© 'k .—)
[ ar,pcleik(rLs (3.13)
~
Finally, the integration with respect to r; is performed
N2 N2
L, 2
k2 (M2 T oMz
© . - - - 1 2
f drlDCmelk(rl s) - 2A e 2
MIMZ
-0
M) = /1+2U%m/L32 Ny = aU
My = /1+2VZm/L2 Ny = BV (3.14)

M, and M, are the positive roots.
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The covariance is therefore

k2
-T- 3

ik(r, -r;)e

(a2U2+ﬂ2V2)
A?k2f, (8)f, (8)e

r, -
2,12
4r‘r'?r,r,

k2 N 2 N 2
© (gD 8[(Ml) 4—(M2)]
y 2 (3.15)
m! M, M,
Mm=0

We shall call the m=o term the coherent component. It is equal to

2 _ -
i lt;—[UZ(or2+4<2r2)+\7"’(/92+4ﬁ"’)]+lk<r1"-’z) -T
A?k2f, (8)f, (8)e ©

Flz - 4x?r'?r,r,

(3.16)

The same result is obtained using (2.25) and (2.40), calculating

x (8t 8)
<p(r; )>M<p(r,;)>Me —

If the surface is mirror-like, G approaches zero. Thus,

k2 _ _
- 7 (U2 (a?+4a2)+V2(32+4B32)] .
A?Kk2f, (8)f, (9)e 8 elk(rl'rz)

F12M - 4m2r'?r,r,
(3.17)
Consequently, (3.16) can be re-expressed:
r - <p(r,)p*(r,)>.e " (3.18)
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so that the degree of coherence can be measured by e-F, and (3.15)

is expressed in terms of the coherent and incoherent components

2 2
_ | 2( M, M,
-T 144 z (G) e

12~ 12w m! M, M, (3.19)
m=1

- 2 _ -
with a factor A = exp(kg(a2U2+ﬁ2V2)).

The intensity is obtained from (3.19) when r;=r,. The few

changes that occur in writing the intensity expression are worth

enumerating, since they will be invoked a few times throughout this

0%

study:

il

r, =r, =r

I
P
A U
AR SAS

o

@ T

Yy = Y2 = 7 :' .
'
|~'
F =g S
N
- N
a=20 a = -¢ l:‘,p?
(1 N

B =0 E = cosfd-§

-~y &
‘f{‘:' 7

from the above, £, (8)=£f,(8) and the intensity at r

o vy
Ic‘

2 2
k2 Nl Nz

- +
= ® m 2 M, M,

LR

4

I
v |
[11]
[
o
-
}.
-2
1
;e.
5

A
'L
sy

m! MM,

o
'I..”‘.

1t

=

- - 2
with N; = -€U N, = (cosf-6§)V A = exp(k5(62U2+(cosﬁ-6)2V?)}

K2 - -
- ———[112512_+\]2lan
A?k?f?(8)e
M dm2(r'r)? ' (3.20)

and FI

PG A



rllH resembles the intensity scattered by a mirror-like surface.

In the limit, when U and V approach zero, the expression given above

) equals radiation scattered by an infinite plane surface in the far
"
’ field -- see Chapter 4. The first term in (3.20) is the coherent
X component of the intensity:
by

r -T '8 (>.21)

llcoh 11M
X 2. Non-Gaussian Surface Autocorrelation
a. Slightly Rough Surface: or low frequency case,
L4
. corresponds to GC<<l. The exponent involving G in (3.10) is expanded
| in a series
. - ‘—(3(02[_]24,52\]2)
; _ k2 (0)f (8)e*(T1 T2l e O
. 12LF
X 8x2r'?r r,
. -
« [ dr,pet*(F ) (146c+ % G2C2. . .) (3.22)

XY A S W Y

TAANL 4N N

(4
¥

PSRN

The first term is familiar to us, since it is the coherent term
that appears in (3.16). We shall be interested in the first two

terms in (3.22). What remains therefore, is the computation of the

td I, " o.
]
i

FUE WY WL

o
S S

P t.

first term in the incoherent part of the covariance

*

‘.
Ye e

e’

.

w© .
I erDelk(tl s)

-

GC(r)) (3.23)
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@ . .
where C(r) = z—j';- f dyx w(x)elx r
-

and W is the two-dimensional surface spectrum and the cartesian

surface wavevector is

A A
i+x j .
X=X, XyJ
Again, uniform convergence allows the integration with respect to r;
be performed first

«© - ©
GW(x) ik(ry-s) _ 2a6 ,
[ ax 3pg2 J driDe CCED) = rgz [ ddx Wix, xy)

- 2 (katx, ) 207+ (i, ) 292 (3.26)
e

Substituting (3.24) and (3.16) into (3.22) we obtain

=T
12LF 12coh

k?
. - £ (a2u?4p2v2)
CAZK2E, (8)F, (B)e K(T1-T2)g T, 8 o

* 8ﬂ3a2r1r2r'2 II dXdeyw(X,,Xy)

-

v v

- 2 (kavx, ) 20T+ (KB, ) 7V? )
e (3.25)

A

p

z

r

For the intensity, again we let r;=rp,=r and (3.25) transforms to

&
v

[}
[ ]

Y
.
.
Y,
s
3 »

)
3

gAZK?£2(0)e o -2 [(katx, ) 207 (KB, ) 202
= + dy. W( 2 y o
LILF 1leoh gogoo(iipya JTax, dx, Wixy . xy e

-x

n"

£

‘l“

l.. 1
LS,
oot o T Y

...,
)
OuJi

(3.26)
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b. Very Rough Surface: or high frequenc, limit is 76
applicable when GC>>1. The integral in (3.10) can be evaluated after
approximating C(r;) by a power series about the origin and using O

saddlepoint integration.

“~
4c(0,0) C(0,0Y, 1x2482¢C(0,0) 1y2392c(0.0 "
C(x,y) C(0,0)+x Ix +yQ'15;—l+ 2 3y2 + 2 ay? ~4

2 N
+ xy0.0) (3.27) X

h

axdy t."i

\

W

The saddle point is at the origin, the value of C(0,0) is one and the g
Y

first order terms are zero. The surface has symmetry in x,y so that

the second order cross term is zero. Impose the restriction that the

surface must have at least second order derivatives. Thus

28%C

. 1 ( ,a2C
C(x,y) 1+ 5 [x 0'0+y 3y?

ax2 0 0] (3.28) -

T
‘

2
e

G
© 9 (Ty-T;x2-T,y?)

‘g

and e TG0 ¢ (3.29)

-
5
'

® .é;

M |
v s By
-"'_-;

.l .D

(v,- v)?
where Ty = -4z
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cubstituting (3.29) in (3.10) and integrating yields i

AKZE, (8)F, (8)e K (T1 T2) A

r - T Y
128F 4x%r'?r;r,B,B,

(x'ﬂ
e

3

- %3[02(a2+432/sf)+v2(p2+452/52)] - 31, (3.30)
e

Y

x e

t x."l"l“l
Ax

"bﬁ;f?

for covariance,

e

s

where B, = /1-GT,U? B, = J/1-GT,V2.

e

1 Note that T, and T, are nagative, B, and B, are positive roots.

‘tdt

LN
o

For intensity (3.30) gives

LR
o
N A

(NP
RN
A b

?»
%

v~
-4

2
- E1@/8]Huze (B /83 )ve)
A?k2f2(@)e

i = 4m?(r‘'r)?B; B, (3.31)

BN
S %
S

>N -w
ty
PALAS

&t

Ny

13
L]

a2

X B. THE SLOPE-OPERATOR MODEL

1o

1. Formulation

This model shall be developed using both the Fresnel and A

P

Frauhofer approximation. Firstly, using (2.36) the pressure at some o

point r, is derived P

"-‘ n-
b ik(r,+r') AN
b ke ¢ ' = (ke - ,.
X p(r,) = 2mir'r, ff D:ie (e, ' +6,¢"» -sinf,)dx' ' *dy' ' - o
-®

(3.32) 'E

» Multiplying (2.36) by the complex conjugate of (3.32) yields EE?\

o
> f:f
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®
ik(r;-r.) = ; R S : ‘
1 ffff D-'D"'elk(° ® ) 5&*

k2e

* -
p(ry)p*(x,) 4x?r'2r,r,

x [elg;'+61§;'-sinﬁl][ezg;"+62§;"-sin&z]dx"dy"dx'"dy"'

(3.33) s

and the expectation of (3,33), becomes L

k2eik(rl-rz) ®

®
<p(r,)p*(r,)> = {fff DD <ok ) e

4m2r’2r r, 47
[er€, +51§y -sind €0 +62§y -sinf, |>dx: ' dy' *dx' ' dy' ‘- "
(3.34) S

The random quantity ¢ is in the phase, therefore in the center-of- \

N,

mass and difference coordinates

T
‘.{
A 4

<elK(@ =@ )>  ik[ry SRy s]_-ik(n, 60 om0 )

-

>

,'l,'v 4

(T )
,':
A

o
4 ‘{.
[l

oz

. -|x2+y2 | -, o, + -- s
. elk [P [ 4 + x4y + P (x}'+x}’) (3.35) '.%';\::

where P* = P, +P, P~ = P,-P,

n"}

The first two exponentials are the familiar Fraunhofer

i{ki
. - F
"J‘ }' .

2
a' .

approximation and characteristic function. The third term is the

v‘.*"’.l., -‘
PR ]

correction necessary so that the Fresnel phase approximation can be
presented. This term is the first in the expansion to show coupling

among the orthogonal coordinates.
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2. The Slope-Operator N
Welton (25) and others (39,40) apply a theorem of mathematical v
statistics (41, p. 68) that postulates Jﬁh

9  o-ikbz, _ 2 -ikbz, (3.36) e
aq dq

where z=z(q), provided the first- and second-order derivative of the .
autocovariance exist. v

Thus,

<g;e'ik(71§"'7z§"')> - . ikl-y g;<e'ik(71§""iz§'”') ,? -
1

TR 1 TG SRR TEED N S R SUICATIA IS
$x fx © > T Ky |0k ag o <©

\%
—_—
“ . -
N® s

>

5’
e

(3.37)

\.r‘:' &
s

ll:('\ “u
i

g 9 3

etc.

Application of this theorem allows expressing the averaged quantity

'l L]
S
I ]
PR

in (3.34) as

|".)
05'
0

's, ,
r

&/

2 2 - — --
ik[P'(&-fz— + X2+y2)+PH (xy+xy) |
e

1’"’
5

eik[rl's+Rl's] T<e-ik(71§"-72§"')>

f(’
w5
e )

[4
& & %W

(3.38)
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where the Slope-Operator is defined as
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. : 1 a 3
T(x'',x Y'Y )=sinf,sind, + k27172{[€1626x', ax v
4 9d__ —92 9
+6,6, 3y’ ay...+€152 ax.,ay,,,+51€z 3x: 3y »
: . ) g : ol a
+ ik [7151n01[ €250, " SZay_',]-yzslnoz[ €150 " 5, 3y ]J}
(3.39)
in the old coordinates. In the new coordinates
. g —L az_ a2 az
T(x,y)=sind,sind, - k27172{[e1526x2 + 61626y2 +(5162+ez61)axay
. é , .4 . a_ a_
+ik[7151n01[ €255 * uzay]+7251n02[ 19w +616y . (3.40)

Incorporating all these changes, as well as replacing the

characteristic by eq. (3.7), transforms (3.34) into

ik(rl'rz)e'r @ © -
[ dr, [ drR, DDe

-

ke
= 2,12
12 4xr'‘r,r,

ik

24y2 - — --
P'(E—fl‘ +x2+y2)+P+(xy+xy)}
r

e1k(rl's+RL's)TeGC(rl) (3.41)
The first exponential within the integral is identically unity

when the Fraunhofer phase approximation is discussed. Since T is an

operator in r, then the integration with respect to R; can be

performed using the result from (3.9)
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o .Y
& ow
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S A

s

,.
'.:s;.‘
LRy

v
@ "r"‘.:
X,

~1$2— 2112 2y2

, ik(r,-r,)-T ~ gLa Ui+A* V]

FR _ Ak“e e e f dr. D
12 Bn2x’2y,v, L

-

-]

5

r eler'STeGC(rL)

s

2,

L
«ﬂép
> o s

(3.42)

for the Fraunhofer approximation case. Henceforth the superscript

Fh indicates Fraunhofer and the superscript Fn indicates the Fresnel

result.

The Fresnel result is i

R kla. 2_(&&)2(
Fn akzetk(F1T2) T 20 2Q;

2412 @
12 27%r'?r, 1, W, o

kU2P+a_

a2y 2
3 12Q) <

o X24y? o, L
o ik{P"( Y+PTxy] .2 L
« [ ar,De 4 eikrl sTeGC(rl) (3.43)
- ®

. with Q, = J/2-1kP U2 Q, - JZ-ikp V? A

oy
(‘- (‘x
Y4 N

| W, - jZdiQ§+(kUVP+)2 , all positive roots

s
h]
Z

a
»
I

”
AR

3. Surface Autocorrelation

P4
AR
e’

3.1 Surface with Gaussian Autocorrelation

x '.l
v ®

The autocorrelation for this case appears in (3.11) and the

e T B
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p

4y
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result of the slope operator acting on (3.12) is
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@© m © m .
T ia ¢’ -1 g! 'amz[61ezzjx2+615222Y2+(5152+5251)21IZXYJ

m=0 m=0

+2m[615221+516222+ik{1151n01(5221x+6222y)+1zsin02(5121x+6122y)]

m

+k211125inﬂlsin02} E;ﬁ?;fl

where £, = =~ 2, = L; (3.44)
L1 Lz

The integration with respect to r; is performed after exchanging
the integration and summation operations in (3.42) and (3.43) and

incorporating the results of (3.44):

2 2 32
© m - f‘(g‘ » &

Fh G A A . .
r, =4 mzo a1 1 2_|k2v,v,sind, sing,
JA A,
k?vy_ sind lea 268
+2m{€1€2£1+5152£2 - 12 1 [ lAfi + ZA:

_k2 : a 3
k 7, 511’10Z Elcla + ﬂzilﬁ

k2aBR £ e e 20 _ 5605
2 J—1_2 ~ 2 3 242 1.2 .2 282
+m AlAz (5182+cz81)+ Alz (k?a?-2A,)+ A?z_ (k282-24,)

(3.49)
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k2, 5
- U2+482y2
ik(r,-r,) -T 8 (¥
where H, = he &%
¢ 8xr'2r,r,7 1,
£ 1
and A; = 2u? +m¢, A, = 7v2 +mi,
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for the Fraunhofer case. For the Fresnel approximation the same

computation gives

B2a, +aa, +ikP*af
k2
o m PR TG A, vk2pe
r ™ oh 7 & +
12 ¢ m!
m=0

1
a;

Jbaya, +k?P?

+

’
az

+2€16221+2616222]

2r€1€2£§
-2m laz 3,

]
)

_ 2
k?a? P'ak?b k2P’ s
T2 Y T 4a’'? [2b +a2]
2 2
2 22 ab P+ 2b2+a;
-ik(e 8, +€,6,) -i—- ZZ - E_ [ E ] +51522:[

L i
with hg = Ak’elk‘rl ), Fe

kUe,? kV8

-(ZQI) +(2Q1w1)

k22 Py -
+m[————(6271sin01+617251n82)( -a)-2ik(6,v,sind +6,v,sind, )5

-iZQf)Q

k2y,v,s5inf, sind,

2 b

-
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2

(3.46)
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Q, ? Q,? k2p* K

a, = (73 + mk a, = (75) + m4 a' = a, + ®
1 2L 1 2 2V 2 2 4 a, v

\:_-..

N

— e

1 ,Pak? . - S

- - ~
and b =5 ( 2a, ikg) .
The coherent component in either approximation is
ioap 3 QT j = Fh or Fn (3.47)

12 coh 12 M

T

and the covariance from a mirror-like surface is

A A o e

2 _ -
- 5§(U2(a2+4a2)+v2(a2+452)]
A?kZ?e
- 4m2r,r,r'?

ik(r,-r . :
etk (T 2)31n9151n02 .

Fh
12 M
(3.48)

KDY
WA A
P4 o

for the Fraunhofer case, obtained by taking the m=0 term from (3.45)

G 4N

-,

and letting ¢ and L, ,L, approach zero and infinity, respectively.

-i.

e

- .
L
"l

For the Fresnel approximation we use (3.46) and perform the identical

'I' ..' .I
.‘ " s
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procedure
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1z M n2r, T, 2W, /(Q,Q, ) 2+ (2UVKPT) 2

-1 k2] (aQ,U)2+(BQ, V) 2+ikapU2V?
(Q,Q, ) 2+(2UVkP*)?2

sinf,sind,
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.
To get the intensity we let ry; equal to r,, (3.45) and (3.46) for the
)
!
Fraunhofer case,
A 2 2 - 2
. o - gf ) _IZ_(:‘__ + (co:ﬁ 8) )
- Fn - Hr Z m! £ - =
K m=o0
. JA 8,
'
b, 2, e? N
x l:k2725in201+2 6221+62£2+k2751n91[T1' -1, ﬂc—z:—"—'ﬁ]»
] J
¥
i -
v ez 524 2k22, 2,
y +m? ( (k2e2-2A, )+ — (k?(cos-6)2-24,)- A A cos(8-8)6€?)]
A A 152 4
1 2
: (3.50)
< Ae’®
: with Hp = 8x(r'r)22
\ and
N
)
- -
B2a, +a2a?+ikPaf
- eXP{-kz[ S ]}
© m
- Fn g 4a, a,+k?P? 22 2
:: Fll hI mzo m! (k Y“S1ln [
" - /—.——..——
K Jba,a,+k?p? .
[
SN
D
o 2k22, oh - . o
N +m[—=—evysinf, (= -a)-4iksysing £, = + 2€22,+2622,] AN
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with hy = he
72(r’'r)2/16+(kUVP)2 -2
d . -1 2
‘ an a; =gz tmdy
|
i i 1 i k2p2 - ek 2
| 3 = yz * al = a, + =F b'%( Pk ih)
‘ 431 231
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)
with p- I2E
r'r
Again, the coherent component of the intensity is ﬁ% p
“
it
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- -8 RO
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the covariance can be expressed in terms of its coherent and ®
l_‘ .l‘
incoherent component as ; o
P
K2 oy
- g [U2(a?+4a?)+V2(B244A")] Ly ¢ Fonl

A%kZe e 1" "27¢ "sinf,sind, )

- A

12 4x%el2rr, T
e

2 .;_'J‘
- - 2 2 2 e
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2 © o m 4 ' A A -

o(1+ I8 y e - 201 9
2Ak?y,v, sinf,sind, - m! v
JAA, iy
".“‘

Wy

(3.55) L

e

where the argument in square brackets [ ] is that of (3.45).
Similarly, the intensity is e

2 Y
- %‘[U252+V2(cosﬁ-6)2] S

g °
A%?k2e e g51n"’01
Fn

- .l" h. 3
11 4mx2(r'r)? ohs

EZ 2.2 2 2 K< ﬁ cosf -6 2 &
,,e2 (U2¢2+4V2(cosf-6)2) - . e- [ AL + A, ] sy
x I+ 2AkZy2sin?4, 2 !

/AIAZ M
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The first term in both expressions is their respective coherent
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component.
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b. Non-Gaussian Surface Autocorrelation in the Farfield
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be in the farfield and the beamwidth be sufficiently narrow. The ®
. sl%' '
SON
criteria for farfield for the Tangent Plane methods was developed and iﬁ-*'
o
nh
discussed by Welton (25) and can be summarized, for the worst case PN
OF Y
(specular direction) intensity computations he finds that - .
Rk
l_ »
\;‘% .
~ {
, tan2($) ]
g . 1.345 (1+ IR ) 2 (3.57) AN
L= 2J./2 ry sindj ) » ¥
¢
! In the nonspecular cirection the criteria is less stringent. Y
! ~
| -, \
For covariance, both receivers must satisfy the above criterion, thus g?%?(
S
r and §; must assume the values of the respective receiver. m:?
o~
-"- e
Furthermore, we limit ourselves to presenting results valid for the ;“it}
fadact
surfaces with onmidirectional spectra, hence L,=L,=2"!/2L, 5% <3
Y
The same high and low frequency approximation performed in
".:'f‘.‘\'
connection with the Standard Model shall also be used here. The term :":$
) W,
N
involving the operator and the surface autocorrelation needs to be :Sib;
o,
o Wia )8
computed for both the high and low frequency approximations: O
;:\;ﬂ
~ N 3
GC G 2 2 ‘:\ix
. . L O LNt s
Te = {sind,sind, + k2,7, (elez[S(xx)+Gs2(Xx)]+6162[S(xy)+G82(xy)] ::?::
T
W W
[ .
+(ey8p+€,6,) [6 (Rexy) +GS(xx) 6 (xy) ] voead
RS
. : . i GC NN
+k(ey v, sinf +e; 7, 5108, ) S(xx) k(6,7 5ind, +8, 7, 51nd,)S(xy) Ve A
(3.58) S
S ix'r
= x'ry
where SC) =5-3 :rdeW(x)( Ye
and the quantity in parenthesis is always a scalar (magnitude).
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2. Slightly Rough Surface: The exponential in (3.58) is ®
,‘lf 3
. : . . i
expanded. The first 2 terms are retained and (3.58) is substituted o
Ty (g
o
l\ :
into (3.42), the equation corresponding to the Fraunhofer A
G
approximation result. The integrations in r; are peformed to obtain
7
. - Elaru24p7v2) Vs
-r - N .
Fh AZe s 2)§ e N
- #
12 LF 4n?r'2r,r,7,7, %2
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ke — _
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- 2 o
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© - 2. 2 oty
G U 2 \Y ) e
+ (2702) {mdxw(x)e (k2717zsinﬂlsin02+elezxx f\ :
r 2
<
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2 e
+6162xy+(6162+e261)xxxy+k(5271sin01+elsin02)xx+k(6251n01+515in02)xy) 2.
0o
’ ] L)
(katxytx )2 (kBtxy+x )2 A
X U2 4 y2 o
G2 «© md w - 2 :_-{
——— ’ ’ S
* (2no?)? {mdx {w x' W(x)W(x')e N
, , ' ;k;.
2 2 }u:i‘ :
*Cepeg OatxaX, )48 85 (X txyx )+ (e 8462 61 ) xx (Xy*x,) e
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N '_
G3 © @ © tﬁ
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The range of validity of (3.59) is that GC(r;)<<l. The intensity is

2 — -
A2e & . %‘[02U2+ﬂ2v2]

(k?y2?sin?f,e

r P
11 LF 4x2(r'r)?y,

(katxy)?  (KB+xy)?
2 U2_ 2 v?

“Ef;;‘ I dxdi(x)e

x (k272sin201+e2x;+62x;+2e&xxxy+2kysin01(exx+6xy))

(katxytx, )7 (kBrxytx )2

2 © © - __E____— U2- > v2
* Grorye d dx [ ax WGoW(x')e
- -0
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g3 g o
+ (2702)3 f dx f dx’ f dy" WOOW(x'YW(x")

-~ -

-

-(k;+xx+x;+x;)zuz-(E5+Xy+X,+X")2V2

. . 2 2 (52XXX;+52XyX;+268xXX;)) (3.60)
3. Very Rough Surface: The method of stationary phase is

employed to evaluate (3.42) with respect to its spatial dependence

once (3.58) is substituted in (3.42) and the results from (3.28) and

(3.29) are used. In this case, the result

- v . o« M I PR LTS IR RN Ba¥ Dot S - B . R AR N A

LS

F:qu‘ f..l‘
5

x;
'.,'-;55-.‘.’1-

f..r \f']' v &

S

AR AR N

«x
Y
r

AR RN
4

Ty

7

e
T
HIAE

'ﬁi

',' 1
‘-r
2t

AR
.
]

~w

)
»
by |

RPN Zﬁ
e @ S

"’
»
[

T

‘10

f':’"(. . .v 5-‘_'1‘
DO
. : .\‘,'.‘. -"'\-’,'-

3¢,
'{ l.‘ '.

9!

e
’ﬁ)\.'s
P
A

i<ﬂ3
o ln




65

_ GTe

k2
- ~§ [a2U2+ﬂ2V2]

AZe e
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where B; = /1-GT,U? and B, =~ /1-GT,V? are positive roots.

This formulation is valid when GC>>1 and the intensity
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T

e

;

}iﬂ <?

%

s

(ezxx+52Xy+2€5Xny+2k75in91(exx+6xy))

ELLLT

(k;+xx+xx) 2u? (k§+xy+xl) 2v2
2 ) 282 X
eary2 Joax [ ax'Wou(x)e S

¥

2 ’ 2 L4 [
(e xxxx+6 XyXy +2€6xxxy)). (3.62)

! Low and high frequency expressions in the Fresnel approximation could
i h
{ be developed. The algebra is involved and tedius, but not \ ]
impossible. J’
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C. THE COMPOSITE-ROUGHNESS MODEL (5,6,7) Wt

1. Introduction ey

The present section deals with a technique that has been ®
successful in studies involving a one-dimensional ocean surface. $~4
This is so because it assumes that the surface to which this model ’x*?
applies scatters the incoming wave in two phenomenclogically
different ways. First, the long wavelength incoming radiation, sees Y
a surface that is locally flat, possibly with non-zero slope, and _

*a
scatters from it as if though it were a distribution of mirror-like e .

o
[
R

facets. In optics this corresponds to the physical optics domain of

D)
NN

'.‘ YUY S L Y
s, *,

PR

radiation scatter and is not new to us since it is formulated by the

-
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Y

Helmholtz-Kirchhoff Integral or the Double-Layer Potential Integral
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discussed previously. Second, the short wavelength incident wave
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will be scattered diffusely by the ripple which rides on the large
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“ scale undulating surface (see Fig. 3). The ripple has the features

of surfaces to which the Method of Small Perturbation applies, such

. e
E A

as rapidly changing slopes and small crest-to-trough amplitudes. A

- theory that applies to surfaces of this type, with two roughness
3 ranges, could be one that merges the Helmholtz-Kirchhoff Integral and -$~'
” b ',
:.‘ - J: 3
: the Method of Small Perturbation. It would imply.that the scattered 'y
e
1y . P,
! wave undergoes Dali-like distortion as predicted by the Helmholtz P
V., s XX
o Integral, but the sharp definition is somewhat lost due to the s
‘N ..‘::,
S Rt
. contribution of the perturbation. 'k
y ¢
p @ §
. The model being discussed is the Composite-Roughness Model. It ;J
X RO,
b applies well to surfaces that can be divided into two scales of \$:*
o WAy
. roughness, and have most of their energy scattering potential Al
- ’ \
- . . N
b concentrated in the lower regime of the spectrum. However, a problem
7 .-::: =
o arises when it is not clear where this spectrum splitting occurs. -}}}
& -
& . . . .
) McDaniel (7) has improved the method by including diffraction -3;
< ol
& .i .)l,
: corrections. These corrections are also beneficial in reducing the
) e ‘:ﬁ
’\ sensitivity of the results to changes in cutoff surface wavenumber. !
I- “
) ot
. As with the Tangent-Plane methods this strategy requires the Lok
. -\f:& 1
. computation of the expectation of the projection of the source ®
L,
] MO
' wavenumber and the random surface normal. A choice must be made, NG
.| L ':r\,-.
» N
3 which usually considers computational simplicity heavily on the ;ﬁj
] re
. | 30
) averaging technique. But the demands here are not so stringent as in
‘ ~ _',‘-
Q the Tangent-Plane Method since the normal in question is taken to be Lﬁ,
" LWt
'\. \ -,'P-: \
0 the slowly varying large-scale roughness normal. The next two ~Tay
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subsections will present the spatial covariance formulation using the
g conventional Composite-Roughness Model and diffractive corrections
are introduced in the last section.
2. The Conventjonal Model: the interest is to develop two
. expressions in the Fraunhofer phase approximation. One will
)
Q incorporate the function f(8) as an approximation to the evaluation
of the dot product involving the random normal to the surface.
Another expression will use the slope operator instead. The last
section shall leave the issue of the dot product behind and shall

describe the changes that occur in the model when diffractive

o
[y AL
V ’{':
' corrections as proposed by McDaniel (7) are incorporated. ?ﬁh
[ L~

; Lo
% a. Integration-by-Parts Procedure; Equation (3.10) is our a

starting point. The autocorrelation function is expressed as a sum

of contributions from the spectra of the large scale surface plus the

o

'2 small scale surface spectra.

e

! C(r;) = Cr(x;) + Cg(r,) (3.63)

;: where

r KL 27|’

o 1

- CL(r) = 55~ [ =de [ dW(x,@)cos(x-r)) ‘
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in cylindrical coordinates, with x; Yeing the low wavenumber cutn

GC

Thus, the exponential e can be expressed as

2
LG(CL+Cs) _ GCy [1+GCg + %T Ci + ] (3.64

so that (3.10) is now

k2
) ) - —(021]2+ﬂ2‘72)
Ak’fl(e)fz(e)ei (r rz)e I‘e 8

2 '2
12 8n%r,xr,r

© . =
« [ dr,pe™(TL 8280 11460,

-

if we retain up to first order terms in Cg.
The first term of this integral is the contribution from the
large-scale surface and shall be separated for convenience. The

expression for the covariance is

k2
) - =(a?U%+82V2)
AK2£, ()£, (8)e X(F1T2) Ty 8
P2 ™ 8n2r,r,r'?
. ik(r,-s) GC
x {QL + f er_Del (rl S)e LGCs} (3.65
-0
» ik(r,*s) GC
where QL = [ dr De*'TL $) 60
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The large-scale surface autoccrrelation can be expanded about r,=0.
The autocorrelation length is asstmed to be small and the spectrum is

assumed non-directional. Thus,

o 2 1 a; 2 1 [e 2

S U %1 R A i 4 2 . & [ 2

Criry) . 2 1o | ¥ 2 |5 ¥ (3.66)
with op, = rms large-scale surface waveheight

’
o= the x component of the rms slope-large scale surface

ay = the y component of the rms slope-large scale surface.

Substitution into the explicit form of (3.65) gives

k?
- _(G2U2+ ﬁ2V2)
Ak’fl(e)fz(e)ei ( 1q'ﬁz)e're 8

2,12
12 8x?r'?r,r,

o

L G 2 "2
G(Z7) = © cv T - 5o “x%+0 Ty?)
< {QL+ e o f dy ‘r dx Delk(ax+ﬁy)e 20 x y
- -0
G 7 ix'r
Trar ) dx Wooe X l} (3.67)
¢

The symbol } indicates that the integrals lower limit corresponds to
the cutoff spectral wavenumber.

Integrating over x and y gives
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Kk - E(c12U2+ﬂ?V2)
Ak2f, (8)f, (9)e K(F1 T2) Ty 8 {QL +
F12 - 8x2%r'?r r,
ZL 2 U2 - 2 -
66 ¥ " grzlkatxd? - opa(kftxy)?
, 28e G_ [ dxi(x)e 1 2 }
R,R, 2x0? ¢
912 - -
) k? o202 = g2v2
28 ° - 2URe * TRe )
with QL = TRER ¢ 1 2 (3.68)
1Ry

'

‘ o
and R; = J14GU?(—5)?,

B

! a'
R, - ,/1+GV2(—;¥)2 are positive roots.

and the intensity is similar except that the constant in front of

. 2£2(g) ) .
(3.68) is replaced by Ak8£2(3'§)2 . The above equation and the

Go
. . . . S
resultant equation for intensity are valid so long as (";-)2 <<1.

In terms of a coherent and incoherent component, (3.68) can be

expressed as

2 212 2y2
R
R R
- T l+e 1 1
12 12 coh
U2 — V2 _
- m (a2 - T (KBxy)
G © 2R1 2R2
* Zaoz I dH(x)e (3.69)
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so that T = [ e as usual and
12 coh 12 M

k2 L
ik(r,r,) ~ 8@ UHAVY) G 7

A%Kk2f, (8)f, (8)e e e
Tiaw " 4x?r’'2r,r,RR,
T
2,202 2y2 o
_ .é_ [a U + U_] ,_.-r_':.ﬂ .
Rf R: NG
x e (3.70) =

The intensity has the same term in { } brackets (the values of a and

B are different for intensity) but

%

e !

o 2 272 B2y2 “&i{
G(;L)z - k_z[g_Uz + Q_ZV_.] J.‘
R1 Rz ;
_ A?k?fZ(8)e e -g ~
11 coh 4n2(r'r)?R,R, ¢ (3.71)

b. Incorporating the Slope Operator:

Recognizing the similarities between the expansion in (3.64) and
the one used to obtain (3.59), the result of using the slope-operator
in the context of the Composite-Roughness Model can readily be

derived using the results of (3.68):
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valid so long (gfl)<<l. The symbol } indicates that the lower limit
of integration is consistent with the lower limit in (3.68).

The intensity is
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3. ompo -Roughne ode corporatin active Correc
The surface correlation function is partitioned as was done in

(3.63), but the expression for the large-scale surface correlation is

now

‘3

o

: -2t 3 wgprrin 2 Fase Pt oo

¢ -o, - o!2x2+g’ . Hrtcosix'x

: o0y, L 2 X y}' 2“0" . L3 X'y

; -1+ l( ‘r;)?) (3.74)
: 21X TL '

Using (3.63) and (3.77), the exponential term in (3.10) is

o d

-~

- @ ' 'y G KL 2x

{ ik(r,-8)- — [(axx)2+(a y)21+ f&d&fdﬂW(n,ﬂ)(cos(x'rl)-l

E 202 y 20 0 o

D)

0

bl

2

N +2 rED?) 6224605y (). (3.75)
3

'y

Q:) (74

;‘ When G(;L) is small the above result can be recast as

)

T

L} .‘

h .g). =S= ") 2400 v)2 -C2(1- G ") 24 (0 v)2

2 tik(r -8)- 773 [(o,.%) +(ayy) 11-62(1-C(xr )+ 5.7 ((o.%) +(ayy) )],
n (3.76)
A/

3 Using (3.75), or (3.76) when applicable, in (3.10) and performing the
0'.

? integrations over r, variables yields an expression that incorporates
*

)

;b diffractive corrections and that is less sensitive to the choice of
wh partitioning wavenumber. The result is also attractive because it
o
&a lacks computational complexity and gives fairly good agreement when
o

K its predictions are compared to experiment.
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CHAPTER 1V

SCATTERING STRENGTH AND COHERENCE

A. SCATTERING STRENGTH

The different models presented in the previous chapter are
compared and their behavior analyzed. The aim of the first half of
this chapter is to compare the Standard and Slope-Operator Model in
general terms, in addition to the three alternatives to the Slope-
Operator Model: the Fraunhofer Approximation, the Fresnel
Approximation and the case when the random normal e is approximated

in
a

by 3z - To enable comparison, section A examines the scattering

strength, defined as

' 2

S = 10log,, (-(-‘-;:-)- r,) (4.1)

involving a flat and a Gaussian surface. Note, however, that the
plots shown are normalized to the maximum values. Therefore, the
figures show the normalized scattering strength. The second half of
the chapter compares the Standard and Slope-Operator models, as they

are applied to the measure of coherence (1, p. 498)

12 1/2 (4.2)
(r. . r_)
11 22

@
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wﬁgn the surface involved is Gaussian. From the three alternatives
of the Slope-Operator Model, the Fraunhofer Slope-Operator Model is
chosen for comparison to the Standard Model.
1. Elat Surface:

The classical expression for the scattering strength involving a

flat surface in the Fraunhofer approximation is

Ak?sin?¢
So = 10log (—m ) (4.3)

and is shown in Figure 4 in the specular case. Equation (3.51), the
Slope-Operator Model yields

Ak2sin?¢
s,, = l0log  { -——-‘-4”, ). (4.4)

when r’ and r become large and the beam very narrow. I1f the same

approximations were possible for the Standard Model (3.20) the result

would be

Ak2£2(0)

S, = 10leg = Tz 5 ) (4.5)
For the specular test shown in Figure 4, £(8) reduces to
(1+sin?4)/2sind. Figure 5 shows good agreement between the
Fraunhofer Slope-Operator, Standard and Figure 4. The plots of
Figure 5 show the models without making any approximations. The

Fresnel expression will agree with the other two if the above

mentioned limiting vaues for r’, r and the beam are made. The
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Figure 4. Scattered intensity specular direction in the Fraunhofer - "
approximation. Flat surface. Source at 500 cm frequency vond

is 10 KHz, beamwidth is 3°. ey
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discrepancy between the Standard Model and the Slope-Operator Model
in connection to the angular dependence demonstrates how weakly they
depend on the functions £(@) and sin?¢ in the specular case.

For the forward case, the lack of consistency between the two
models becomes more obvious. This hypothesis is based not only on
the fact that £(8) does not simplify to sin2?6, for all cases, but
because by assumption the Standard Model is valid not far from the
specular direction. Figure 6 illustrates this point. The Standard
Model misbehaves at low and very high receiver grazing angles.

Since the Standard Model is limited to the near specular
direction, in the backscatter test it is expected to perform poorly
far away from the normal to the mean surface. This is obviously
demonstrated in Figure 7. These figures show the backscatter
involving a flat surface and a slightly rough Gaussian surface for a
source with 3° beamwidth operating at 10 KHz. 1In this test it is
expected that the energy be higher in amplitude and largely
concentrated around the normal (source grazing angle of 90°) for the
flat surface scatter as shown in Figures 7a an 7b for the Fresnel and
Fraunhofer Slope-Operator Models respectively. This is not the case
for the Standard Model thac is plotted in 7c. This last figure shows
good agreement in the normal direction but breaks down for low

grazing angles, because the model is used outside its region of

validity (see II.B.1).
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2. Gaussian Surface:

a. Backscatter

Figures 8a, 8b, and 8c correspond to equations (3.51), (3.50),
and (3.20), respectively, in the backscatter case. The three figures
¥ show good agreement in the prediction of backscatter close to the
' normal direction. As expected, the low grazing angle regime shows
the Fresnel expression yielding demonstrably less backscatter. Near
K. the normal the three models show that the amplitude changes in
’ proportion to the frequency squared, which is implicit in the k? that
is part of the coherent component of equations (3.51), (3.50), and
(3.20).

The effect of changing the rms height of the surface is
illustrated in Figures 9a, 9b, and 9c. With an increase in the rms
height, the area under the curve becomes wider, as is the case in 9a
J and 9¢, and the overall amplitude drops as seen in all three plots.

Again, the Standard Model fails to provide good results far from the

normal direction.

Q Further insight into the way the Standard Model behaves for low

‘ source grazing angles is given by Figures 10a, b, c¢. In these three

b figures the broken lines represent the coherent component of the

§

: backscattered intensity and they can be compared to the solid line

3 which represents the coherent and incoherent components combined. In
% the Slope-Operator Models the incoherent component contributes to the
i radiation even at low grazing angles. This is not the case in the
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Standard Model, for which the radiation is excl.uisively predicted by it
the coherent term. The plots correspond to a source operating with a gﬁﬁ
3° beamwidth at a frequency of 10 KHz. 1In all the models the vﬁﬁa
incoherent component is the sum of ten terms which is more than ﬂ2¢
adequate for the values to converge for this frequency. In general, }9%
the higher the frequency, the more incoherent terms are needed since %ﬁa
an expansion of the exponential involving the roughness parameter G d.g
was performed in all the models. The result in turn depends on the ;%Q
square of the frequency. ?ﬁ%
sty

b. Forward Scatter
In the forward scatter test, a source is placed at 500 cm from ;jé
the surface, at an angle of 45°. The receiver is 200 cm away from '§§
the surface. Again, the surface has autocorrelation lengths of 20 cm igh
and an rms height of 2 cm. The scattering strength is expected to ;:s
peak in the neighborhood of a receiver grazing angle of 45°, gggg
corresponding to the specular position. 2
Figure 11 is the forward scatter, for a source with 30° beam z:;
operating at 10 KHz, as predicted by the three models. The peak ;%g
occurs in the neighborhood of 48°, not at the specular angle. The -‘ |
peak is frequency and beamwidth dependent in all three models and )§:3
will shift to the specular angle as the frequency or the beamwidth is £

increased. This shift is apparent in Figures 12a, 12b, and 12¢, in
which all models exhibit a peak which is further away from the

specular angle at lower frequencies.
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Figures 13a, 13b, and 13c, show the maxims moving away from the
specular angle for smaller beamwidths. The plots shown in Figures
l4a, b, c hint that the problem lies in the coherent component of
equations (3.20), (3.56), and (3.51). Since it involves frequency
and beam characteristics and is a function of geometry, the
exponential in the coherent term must be causing the phenomenon.

The coherent components of all three models are compared in
Figure 15 to show once more that the Standard Model misbehaves for
angles far away from the specular direction (80°). This is
particularly obvious for shallow receiver angles. A comparison of
this figure with number 11 gives an idea of the importance of the
incoherent component away from the specular direction.

c. Azimuthal Forward Scatter

In this test the source and surface are as in the previous
section, and the receiver is at 200 cm from the surface, the
azimuthal angle is allowed to change while the depression angle is
held fixed at 45°. The reader is reminded that the forward direction
corresponds to an azimuthal angle of 90°, whereas the side and back
are at 180° and 270° respectively, as depicted in Figure 2. Figure
16 shows a comparison of the three models. The peak occurs at 90°
which corresponds to the specular direction, facing the source. The
dip at 270°, in turn, is the antispecular or source position. The
three models tend to behave similarly, although the amplitudes do not

agree except for when the receiver is in the specular direction where
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the Standard and Fresnel result show agreement. Figures 17a, b, c
show general qualitative agreement. Changes in the symmetry of the
surface affect the predicted scatter in the antispecular direction
(270°). When the autocorrelation length parallel to the surface
direction is increased, the backscatter drops drastically towards the
source and the forward scatter increases somewhat. In the limit of
large autocorrelation, this result is logical since in the mirror
surface, the scatter is mainly in the forward direction. On the
other hand, when the cross-directed autocorrelation length is
increased the figures display a narrowing of the forward-directed
scatter and an increase in scatter towards the source. If a surface
with one-dimensional corrugation is envisioned and a source is
directed along the corrugation we would have the limit of the first
example. When the source is directed perpendicular to the
corrugation we would have the limit of the second example.

d.  Summary

The Standard and Slope-Operator models are qualitatively alike,
except for low grazing angles. The energy distribution is better
described by the Slope-Operator Model than the Standard Model as the
surface parameters change, mainly because the energy in the Standard
Model is exclusively dominated by the coherent contribution. The
coherent component is a good roughness estimator. A different

approach to the integration-by-parts or the Slope-Operator is
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possible when the surface is only slightly rough. Th#s ;"
X is done by approximating g; by 5% , and upon examining the §§i§
; development in analogy to the Slope-Operator Model, assuming ¢, and 3?5
’ {y to be zero in eq. 3.34. The result is identical to the coherent X
; comwponent of 3.45. Thus, a comparison between any of the previously ;:2;
% mentioned models with this new approach is one in which the coherent ZTT{
component of the Slope-Operator Model is compared with the full model ‘.
} as well as the Standard approach. The main deficiency of the latter &Egﬁ
1 model is that no spectral information is supplied, or required, by ;$§S§
: the resulting expression. Hence, the approximation is valid in /“dt
: regions where the field is coherent. That comprises a region in the E$é£
» neighborhood of the specular direction for forward scatter and in the ;§5~
' . ,
normal direction for backscatter. The size of these regions grows as yﬂf”
i the autocorrelation lengths get large and the rms height gets small. Eiis
? The significant difference between the two Slope-Operator Models Eéﬁ?
: in the far-field occurs at low grazing angle where the Fresnel h*i;
E expression predicts lower energy levels. To answer the question of ;g;ﬁ
E which model will agree better with experiment, a comparison with data E
‘ is required. 1In the following section, among the Slope-Operator ’ ‘
~
E formulations, the Fraunhofer expression is chosen to study coherence. ?Lm:
n: V’\...

B. COHERENCE
A source operating at 10 KHz with a 3° beam is placed at 200 cm @

and 45° with respect to the mean insonified surface. The surface Ef?

f'\f\'.‘vf\f\ I I )
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has autocorrelétion lengths of 20 cm and an rms height of 2 cm. When
one receiver is placed at the source position and another is allowed
to move polarly as in Figure 18a, the coherence magnitude varies as
shown in Figure 1%9a when predicted by the Standard and Slope-Operator
Models. The peak occurs at 135° which corresponds to the
source/fixed-receiver location. If the moving receiver travels
azimuthally at a constant depression angle of 45° as per Figure 18b,
the magnitude coherence is predicted as plotted in 19b. The
coherence is unity at the source location, when the azimuthal angle
is 270°.

When the fixed probe is placed 200 cm away from the surface with
a depression angle of 45 and a moving receiver travels vertically
forming a plane perpendicular to the mean surface, the arrangement is
called here a vertical coherence test. Figure 20a illustrates this
arrangement. The angle ¢ is set at 90° for the forward scatter
direction, 180° for the side scatter direction or 270° for
backscatter direction. The results for these three cases appear in
Figure 2la, b, c respectively. The peaks occur at a horizontal
distance of 141.42 cm, which corresponds to the depth of the fixed
probe (i.e., 141.42-sec 45°=200.0). Since r, is different from r,
except at the probe location, the phase of the coherence will be non-
zero as shown in Figure 22. This last figure simply reflects the
change in phase due to the k(r,-r,) imaginary argument in the

exponential of eq. 3.45 for the Slope-Operator, and 3.19 for the
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Standard Case. The horizontal coherence test is illustrated by
Figure 20b. The fixed probe is placed at a 45° depression angle, 200
cm away from the surface. The forward, side, and back directions
correspond to azimuthal angles 90°, 180°, and 270° respectively (see
Figure 2). The moveable receiver travels in straight line parallel
to the mean surface within the azimuthal angles shown in Figures 23a,
b, ¢. The coherence is strongly dependent on exp{-I') from expression
(3.45) and (3.19) which is a function of source and receiver
depression angles as well as surface roughness. These are factors
which strongly affect the vertical coherence, but minimally affect
the horizontal coherence, explaining why so little information is
provided by the horizontal measurement while the vertical coherence
is a good indicator of source direction as well as surface roughness.
The width of the magnitude of the coherence tends to get
narrower with an increase in frequency as shown in Figures 24 a,b.
The figures show that both models tend to better agreement as the
source frequency is increased. On the other hand, better agreement
between both models occurs when the beamwidth is decreased. Figures
25 a,b are plots of the coherence as a function of beamwidths for the
two models. The coherence curves become narrow with an increase of
frequency or beamwidth due to the exponentials inveolving -k? as well

as -U?2 and -vZ?,

- e
PO

\',;v I A IR OSAELIG SR PRSI
s . . 0 -




COlL RENCE

Collk RENCE

RECEIVER AZIMUTHAL ANGLE-DEG

Figure 23.

R

W gt by n n -
FOLN L MCOLR ML U0 Y R M 0 e

- .96
92 188 178 T 180 Tas 90

RECEIVER GRAZING ANGLZ~DEG

1.

(b)

S

VAR

COM HLNCE

.87 i i}

.96S - 't R

.96 ‘ .
T Y] 279

RECSIVER AZIMUTHAL ANGLE-JEG

(c)

,.
IS

X;
Sy

3 SR
Ry

‘%
EAAS

.
Nololo/ Il

,...
1 ] ’(
.‘P': -;r"

P

L

Y
e,
S

N

#l -
Horizontal coherence standard, ----: slope- .

operator (a) backscatter direction, (b) side scatter ﬂ_:ﬁ
direction, (c) forward scatter direction. Note SN“»
extremely high resolution of vertical axis when ﬁ:ﬁ\,
comparing these plots to vertical coherence plots. Ao
Tala
w, - “
ﬂﬁaﬁ
" “g

LA
™ .'.'0

.

R

- S W - LA AT A LA PSR B ":*\
.,l. l.!'l' o *‘ N Y -.. “.v _, .' J. o, A Bt W 'd.' .Qo.lo %y A




107

)
.
s

¢
'
W'
Wi

COHERENCE
~3 .
7] -
CONMERENCE
~
[

-

—— e ¢ e e . ——

.

u.

o
o

100 150 200 300 ‘to a0 150 200
oEPTH-CH 0ERTHoC

(a) (1)

N

"

o
(1]
i
o

3CQ

«
'
s

o v
Figure 24. Coherence frequency dependence. © SRHz, ----: RS
1OKHz, #***%: 12KHz (a) standard model, (b) slope-

operator model

v s
LR A

i e
.

T R A A R N L 2l
A AT T NN N e L A




Lo ke %

108

1. . -
2 o'. .'o RS hadl
- Y -
. -
..S,v .o .
YA %
B .
88" .,
-4 . g s .
w ’ z .
9 - -
; .73 S *
E ‘ é .73
H
’7i .7
.lsi‘r .88,
43 160 130 8
s 280 220 T3 .83 o0 P Too
== - ass 3ce
OKP THaCH 0P TH-Cx
(a) (b)

Figure 253. Coherence beamwidth dependence. ___ : 3°, ----: 3°,
*%kx: 10° (a) standard model, (b) slope-operator
model

AN “\ ‘,\‘,*- S IR “',_,s “\'.\ ‘\.\\ J.'a‘\‘ \.‘l. ;,’.'.,_\

.. e

wve Je

o

P
Cd
Lt

)
.-
‘a
)

¥
7
A

‘.( ;
gfi' '

.
)
o T P

]

"1 .
NN
.ﬁg .

1
.

7

4

- -
s
o
- n,

o



oo e -

-

> =5 L

LY ARK S RIIL Il SR RSN Sl Sl N ry '-'{“-' \-_'-'{\'_‘-
L . . B . L}

109

The c~herence is a function of source position. For example,
when the source grazing angle is shallow, U? is large so that the
coherence is low. This is particularly tue when a and a are non-
zero as is the case when the source and receivers are non-coplanar.
Coherence is sensitive to variation of the rms height but is‘best
used as an estimator of spectral information. The variation of the
coherence with rms height is shown in Figures 26 a,b. Figures 26 c,d
show that increasing the autocorrelation length parallel to the
source direction will tend to broaden the coherence curves. Changing
the cross-directed autocorrelation length does not have any affect on
the coherence plots, as is evident in Figures 27 a,b. The best
estimator of surface roughness is the cohefegfiggzponent of the
intensity, since it is equal to <p>y<p>*ye 2 , i.e., the
coherent intensity reflected from a mirror surface times a

"coherence" factor which is a function of surface roughness.
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‘ CHAPTER V

IN-PLANE SCATTER USING THE PIERSON-STACY OCEAN SPECTRUM (42,43)

- -

g The aim is to illustrate and compare the far-field results
obtained from the models developed in Chapter 3 when the surface
involved is the fully developed, non-directional ocean spectrum - see
N Appendix. For convience we list the most salient changes in the

variables owing to the geometry (see Figure 2) and the symmetry in

the spectra:

)
0 l+sinfsind,
£.(®) = Singesing, G.H
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N l+sinfsind,

'; £.(®) = sinf+sind, (5.2)
- Since ¢,=¢,=n/2 then
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al-'fl-o a-a-O

e

% _ cosf, +cosf,
5 a, = - €, =0 B =cosf - ——
A

. §, = cosf, B = - (cosl,-cosb,)
e

- 5§, = cosd,

Y B, = (cosf-cosf,)

,

'; B, = (cosf-cosb,) (5.3)
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and the spectrum W(x) is equal to S(x)/x for the non-directional

case.

A. GENERAL CASE
1. Standard Model
a. Slightly Rough Ocean
Implementing the above changes in equations (3.25)

the covariance and intensity for in-plane scatter are

T = T
12LF l12coh
k2
ik(r, -r,)-T- E—V2ﬂ2 -
GA?k2?f, (8)f, (8)e [fdx_dx
+ 3,2 ) Xx Xy
8x30%r,r,x -

- 0EU+ (Bxy) V7 ]

and (3.26),

x W(xx,xy)e (5.4)
- EZ[V2(52+452)]
AZK2E, (8)e O Jik(xy-ry) T
with PlZcoh- RCTTE P
and
- ©
_ gA2k2f2(g)e 8
P11LF Fllcoh M 8n3g2(r'r)? {idxxdxy
L2 024 (KB ) 2V2
- 5 lxx U2+ (kBxy) ?V2]
X W(Xx»Xy)e N (55)
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2
- K-uage)
- A2k2f2(8)e
with F11coh - 4x2(r'r)?
To evaluate the integrals with an omnidirectional spectrum, we
perform the change of variables
Xy = xcos(l
Xx = xsinQ
and proceed using polar coordinates. The integral is now
L1 232y2 Loyz . Lipzeyz.y2 2 B2
) k?282V? 2n - 2k U2z - 2[k (V2-U?)cos?Q+2kBkV2cosQ]
e [rds [ dawW(x,Q)e e

o o

(5.6)

Where the omnidirectional spectrum S(x)/x and the angular integration
is performed using a procedure outlined by Beckmann (43, p. 195).

The expression transforms into

- -]:-k2E2v'z ® (T+ %) 2 w2 ® ) V;-IC2
2ne ° I =2 [52R fans” 1n(-vekBR)s (e)e
m=o0 ) V2ks o
(5.7)
When E is zero, the expression takes the form
© 2 V2 m @ - % V2l‘:2
C(m+1){Uy=-v* 2m .
2r Y o { > ] [ drec®"S(k)e (5.7a) U
m=0 o A
S
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N
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The evaluation of (5.4) and (5.5) with (5.7) needs to be performed

numerically. A
o

P b. Very Rough Ocean Pl

For covariance eq. (3.30) is e

. k2 - 2 G N
ik(r,-rp) - “glV2(B?+462)/B )] - 3T -
A A%Kk2f, (8)f,(8)e e e

! !

FIZBF - S
] N
X 4x%r’'2?r,r,B,B, N
1)

(5.8)
¥
and the intensity is thus ?'::::t
i — |=‘ K
3 ) ki[ﬂ 2
212 2 2 B, i
c . AZEZ(eNe (5.9 )

11HF 4n?(r'r)?B,;B, : RN

4 with B, - J/1-GT,U?

S

ré

B, = /1-GT,V?
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the square roots are to be taken positive. For an omnidirectional

spectrum T,=T,=T//2 , where

r=o G

Tt aaeas]

a2 2n ik (sinficosf+cosfsind) s
T =372 2ng? J dx [ das(x)e -
o o

or
L s
- 2 ’ P
T =,=2 { dex2S(x) (10) = Ne
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c. Discussion
1. Scattering Strength
A source is placed 500 cm from the ensonified surface and is
operating with a 3° beamwidth. The windspeed measured at 1000 cm is
514.4 cm/s (10 knots). This 10 knot wind produces a surface with

rms height of 15.8 cm and -7.1.10°° for the parameter T, eq. (5.10).

Under these conditions the scattering strength varies with

X . . TRES!
source/receiver polar angle for the specular test as shown in Figure 3?*
28a. Under the same conditions the backscatter case is illustrated
in Figure 28b and for the forward scatter case, 28c. Comparison of

the two plots gives an idea of the greater significance of the

5%
.‘«' LAy

coherent contribution as the frequency is increased. They also

3ok

display the phenomenon of a decrease in amplitude and broadening of

Al

AP

the curves as the frequency is decreased. Note as well that the

;vﬁ

..‘::. i
DAL A

xr v r

1]
o
[

amplitude shifts to the specular direction - 45° - as the frequency

4
"l

Y
py

!SI
b

is increased in the forward scatter test.

If, on the other hand, when the frequency and beamwidth are 10
KHz and 3°, respectively, and the measured windspeed at 1000 cm is
257.2 cm/s, 514.4 cm/s, 771.6 cm/s (corresponding to 5, 10, and 15
knots) the scattering strength will vary as illustrated in Figures
29a, b, c¢. The primary effects are a broadening and decreasing
maximum amplitude with increasing rms height and slope. The forward

and backscatter curves show the fundamental shortcoming of the
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Figure 28. Scattering strength variation with frequency.
standard model. (a) specular, (b) backscatter,
(c) forward scatter. Windspeed of 1000 cm is 514.4
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Standard Model, namely, the severe misprediction for low grazing

angles.
2. Coherenc
Figure 30 shows the variation in the vertical coherence as a
function of windspeed. the source and a fixed probe are 200 cm away
at a depression angle of 45°. The receiver changes in depth from 50
cm to 300 cm. As would be expected, the coherence narrows with an
increase in the surface rms slope and height. The coherence tends to
narrow as well when the frequency or beamwidth is increased (see
Figures 3la, b). The nature of this phenomenon has been discussed in
the previous chapter,
B. SPECIAL CASE: WHEN THE SPECTRAL INTEGRALS CONTAIN A GENERALIZED
FUNCTION
The integral
= = - LU V)

J dxx I dxy Ne =1 (5.11)
-

-0

satifies the equality when U2 and V2 are very large and when N is
equal to A/2x?, because in the limit of very large U2? and V? the
integrand is a delta function. This fact can be used to explicitly
evaluate some cases that involve an arbitrary spectrum.

In this section the above fact is used to solve the equations,
developed in the previous chapter, which involve a non-gaussian
spectrum. The Pierson-Stacy spectrum is chosen here because it is an

interesting case involving a non-gaussian spectrum belonging to an
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cm/s, **¥x: 721.6 cm/s measured at 1000 cm. Source at
200 cm at 45° with 2° beamwidth and operating
frequency of 10 KHz.
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assumed Gaussian height-distributed Dirichlet surface. The in-plane
case is considered, as opposed to the general geometry, because the
amount of algebraic manipulation is reduced considerably. However,
the approximations to be made in this section do not rely on the fact
that the source-surface and surface-receiver rays be co-planar.

The integrand in eq. (5.11) is not present in all three models
considered in the last chapter in the form presented above. Thus,
the constant N shall be different for all three models, depending on
the other parameters of the quadratic term in the exponential that
behaves delta-like in the above approximation. The parameters U? and
V2 are contained in all three models and one must be careful to
consider cases of them large not by making the aperture wide but
rather, by making the values of the source-surface distance very
large in comparison to U and V (see eq. 2.7) while maintaining a very
narrow beamwidth. This is because an assumption common to all three
models is that the ensonified area dimensions must be comparatively

small - see Chapter 2.

1. The Standard and Slope-Operator Models

a. Slightly Rough Surface
Using (3.25) and (3.26) as well as the integration properties of

generalized functions, the Standard Model yields

) k2 B2v2
GAKZE, (8)f, (8)e K(T1 T2) 8 e T w0, 13

r =r +
12LF  12coh 4x202r'?r, 1,

(5.12)
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k? -
. ) -= (B2+482)V2
Azk?fl(e)fz(e)elk(rl rz)e 8 e
with rlZcoh- 4"21-'27_-11.2
and
£2(8)e & (0, |kB])
gA (0, |kB|
Pler -F11c0h+ 4xo?(r'r)? (5.13)
- 1iv?}é‘z’
A?K2£2(8)e 2 o8
with Fllcoh- ar i (e )7

for the covariance and intensity respectively. W is the cartesian-
surface spectrum.

The Slope-Operator Model in the Fraunhofer approximation, Eq.

(3.59), gives

k2
- ——8°[BZV2] -r 2
Ak?e e . & p2y2

A
r - .
12LF 2r'2r1r27172 2n2 Y1v25ind,sind,e

S e

ik(r1'fz)e

G 2 . . >
* Jnaz W(O,|KB[)[7;7,5ind,sinf,+cosh, cosd, B2+
] A,
(cosd,sind, y,+cosf,sinfd,v,)p] o ,‘;:
g
c )2° A
b . . i
+[2”azk ] fde(x)W( -xx;xy-kﬂ)xyk[ (cosf,sind; v, +cosfd,sinb,v,;) ,:-.-'_‘;'.
-® o
w7
s
-Ecos&lcoséz] (5.14) ‘-r":
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A and (3.60) yields
¥
' k2?2 -
W -g - == p2y?
‘ AkZ?e A . 2 - -
' - 2K b A 2 52
. 11LF T 2(rir)Zqy? | 2a2 Y Sin®die * Jmoz W(0.{kB])
¥ [1zsin201+c0520152-2cosﬂlsin817B]
! 2 i )
b +[ Ei;;il f dee(x)W(-xx,-xy-kﬂ)xyk[2c0501sinolv-ﬂcoszal]
B (5.15)
n
3 for covariance and intensity. In both equations the highest order
¢
b correction is neglected.
b. Very Rough Surface
1 For the Standard Model the covariance and intensity are
respectively

. 2 52
L ik(r,-r,) %(ﬂuasg)vz -3 To
.. A%k2f, (8)f, (8)e 17 %27 e
o~ 128F 4x%r’'2?r,r,B,B,
. .16 y
" Ny .3
N and t:bia
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g 232yz

. k2p2v » 2
. 2B e
:. A%k2f2(@)e ﬂ{:{
[~ - T
-~ L\ rer 4x2(r'r)?B,B, (5.17) e
b L J
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k2g2y2 .Clo
!],eik(rl-rz) . 8 2 . .
128F 2871, T, 1, 1 7778,B, T1725infsind,
2 Bz - -
e + 5702 W0, [kB|)[cosd coss,B?-

(cosf,sind, vy, +cosb,sinf, vy, )]

c_)? . ]
'[ 2na2k] {0 DVOOWC-xx, - xy-kB) xy (xy+kB) (5.18)
and
ﬁé 2 y_z.
Ak? A 2ei2q . 20 Bf _ _g ]
Fiier 2(r'r)2y2 { 2x2B,B, ' °'° fe + Sxoz W(0,1KkB[)

" " 2 - .
[cos?elﬂz-zcosolsinmﬂl-[2—,5@] J:mde(x)W(-xx,-xy-kﬁ)xy(xy+kﬂ)}
(5.19)

With GT, and GT, very small. The added constants come from the

normalization factor required for this particular case. L
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2. Composite-Roughness Model
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k282v2
e, ry) e SEhET
Ak2f, (B)f,(8)e 1 T27¢
v 2r'?nr,
) l.[ls?ﬂ 2
—A 2[R, G - vz
{2”2R1R2 e + Ixo? W0, |kB|)u(xy - |kB|) (5.20)
for covariance and for intensity
1 kB
gl(P)z-1) -3 (e
o o AK2f2(8)e A e 2
11 2(r'r)? 272R, R,
+ 5;53‘W(0,IkBI)u(nL-lkﬁl>} (5.21)

o, is the rms height and a; and a; are the rms slopes of the large-
scale surface, u is the Heaviside function. The quantity R;R, can

be replaced by Ga£a§/02, a quantity that must remain small for these

expressions to be valid.

When the Slope-Operator is incorporated, the integrations in

(3.72) and (3.73) yield

2&2 2
ik(r, -r,) k 8V 6(%2 T
r o Akle 1 e e 4 sind, sind
12 2r'?%r, ,r7,7; 2x2R,R, 172 1 2
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D Py
B ~
‘- % 2 } ’ﬁ
, ) 8[(0 ) 1] 1(kav) 2 ::
. r - Ale 812 inzg e 2R ) | 2 W(o, |kB]|) v
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3. Discussion
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y The spectral part of the above equations can be recast in N
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! cylindrical polar coordinates, which is more convenient than cartesian "'J;.
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- when the surface is omni-directional. In that case the following :j
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) S(n)
and W(-xx,-xy-kﬂ) -
n
where n = Jx2+2rxkBcosO+k282 | the positive root.

The spectral integrals will span over « from 0 to infinity and O
from 0 to 2, except in the Composite-Roughness Model, in which the
span of x is from x; to infinity.

Figures 32 a and b are plots of the backscattered and forward
scattered scattering strength as per equation (5.17). In these
computer runs the source and receiver were set at 1000 cm from the
ensonified surface. The wind 1000 cm above the surface was 514.4 cm/s
and the source was given a 1° beamwidth. 1In the forward scatter test
the source had a 45° depression angle. It is apparent in Figure b that
far away from the specular direction, i.e., for receiver angles greater
than 120° or so, the model begins to fail and the effect is more severe
for lower frequencies. The reason for this is that for small U and V,
the source wavenumber k must be large in order for the conditions kV>>1
and kU>>1 to prevail.

A comparison of the prediction of equation (5.17) with that of
(5.19) in the backscatter test case is shown in Figures 33a and b.
These are, respectively, the Standard Model and the Slope-Operator
Model for source/receiver distance of 1000 cm, 1 degree beam and 20
KHz. The wind is 514.4 cm/s at 1000 cm above the surface. The Slope-
Operator Model and the Composite-Roughness Model using equation (5.21)

are compared next in Figures 34a and b. In this case the source is 70
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cm away and all other parameters discussed above are held fixed.
Figure 34b shows the characteristic Bragg resonance dip in the
backscatter plots, which are typical of the experimental findings. The
dip is more noticeable when the beamwidth is narrow - see Figures 35a
and b.

Figures 35a, b, and 34b have all been plotted using a quarter
source wavenumber value for spectral cutoff value «,. The choice of

cutoff is not at all given by the theory itself. Figures 36a, b, and c

show the variation in the backscatter with choice of cutoff wavenumber.

K
;.

In these figures the frequency is 10 KHz and the choice of x; is (a)

S

x

.'_l‘

equal to the source wavenumber, (b) .8 times the wavenumber, (c) 0.25

)

times the wavenumber.

)

Another feature of the Composite-Roughness Model as per equations

it

o

(5.21) and (5.23) is that care must be exercised in order to not q{
N

operate out of the bounds of the regime of validity. Assuming the o~

‘l"

beamwidth is small, the four conditions that must be satisfied are:

g? C:
(a) GCg << 1, which leads to G << 1. This permits the o
c 's

]

b}
«

v m_ &
v
Pl s

series expansion of the exponential involving GCg and the retention of

the first two terms.
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(b) UE‘R‘ << 2405 - 120£2R2, where R is a radial distance on

the insonified area. In order for the Tayler series expansion of the
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large-scale surface autocorrelation to remain valid, eq. (3.66), the
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terms higher than second order must be insignificant compared to those
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retained.
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(¢) U and V must be of comparable or smaller size than R. This
is necessary because an eurly assumption of the TPM was that the
integral over the entire surface was the same as the integral over the
insonified portion due to the minute contribution of the integrand
outside of this region. As well, it is necessary for the quadratic
terms in the spatial integrations of (3.70) to be such that U ? >>
Ga;’/a2 and V2 > Ga)"z/a2 in order to permit the integration over all
space.

(d) Related to the generalized function integration, it is
necessary that V-2+4kzsin260§2 << 1/2 and U2 +4k251n290;2 << 1/2
because the delta-like integration becomes possible when 2R.§/V2 << 1
and 2Rf /U2 <<1.

The Pierson-Stacy report on ocean spectra (42) is to the author’s
knowledge the best study available in the open literature. The report

is not considered to be a definitive study on the subject owing to the

fact that it is a compilation of reports made by several investigators

who considered limited surface wavenumber ranges in different O
.
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experimental conditions, using a wide range of measuring techniques. Eﬁ:\J
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In fact, most investigators agree that a thorough and reliable study on
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the ocean spectrum would be welcomed, but the task has not been
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performed due to the challenges involved with the measurement of

spectra in the open sea.
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spectrum is utilized instead of the omnidirectional one used here.
RS
This would require making none of the geometrical simplifications used ; v 5)
. X : . . G :
in the in-plane situation, as well as the incorporation of angular N

variation in the spectrum function.

Angular variation in the spectrum would be expressed in the form s

) ] (L}
:b
L

]
"
(&

x

A
; .;(‘

.
-

;'u | 2%
W(x,0) = S(x)F(x,{d) (5.29)

with S(x) being the non-directional function used in this study and A

F(x,{l1) most researchers aegree has a general form ®

F(x,0) « G(s)lcos% a-a')|2 (5.30) :?.’n:::s

hh
'H.
é!;;a
-
where s is a function of x such that F(x,0) tends to a narrower and sﬁab q
b ()
g
(- !
higher amplitude angular distribution (44) and G(s) is a normalization N:bﬂ‘.
R
’ function such that the integral over all wavenumber space of equation 3ﬁyLv
. . . . . L
(5.29) is one. The constant Q' is aligned with the mean wind velocity rt¢:}1
N,
. . ¥ '-J__J‘
direction. S
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The surface autocorrelation can be a function of time as well. L
®
7o

, This implies that the surface has a well defined temporal dependence

and that the covariance will be space as well as time dependent. The

autocorrelation function can have an envelope which travels in time

with same group velocity. A case in point (38, p. 518) would be the

wind-blown water waves, for which the autocorrelation can be
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, - — - -bx? "
| C = exp T2 cos [Q(y - r)[exp(-bx ) (5.31) 30
: A N
:’ where the waves are moving in the y direction with phase velocity v and ;ﬁ:
N it
angular frequency . The envelope travels with group velocity u and is
e
K coherent within an approximate range 7 in time. In the x direction it ﬁfn{
-:'.':\:f
! dies off by virtue of the paramater b, the length of each crest. }3{
o
In this type of highly organized surface states, the spatial and }&?f‘
temporal components of the autocorrelation are not separable. 1In a ndﬁﬁ
\]
confused sea, the waves travel in all directions and we would expect ;Jﬂ%
AN
the spatial correlation function to be isotropic, as was assumed in ®

this study, and that the spatial and temporal components be separable.
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CHAPTER VI
SUMMARY AND SUGGESTIONS FOR FURTHER STUDY

In this study two different philosophies for representing the
scattered field when a randomly-rough surface is involved have been
presented. The MSP is simple, adequate when the roughness is very
slight. It doesn’t rely on the Kirchhoff approximation and will
tolerate steep slopes. The scatter is diffuse, whereas the TPM
consider it more of a distortion. The TPM does not handle steep slopes
but can work well with rough surfaces. The drawbacks of the latter are
the use of the Kirchhoff approximation as well as cumbersome
mathematics.

Within the TPM, several variants have been presented. The
Standard Model, simplest of all, is ill behaved for angles far from
the specular direction because the incoherent component makes bad
estimates of its contribution and because an assumption in the
integration-by-parts techniques is that the angular dependence is a
function which is nearly constant so that that it can be removed from
the integral.

The other extreme in complexity is the Slope-Operator Model, which
is shown to behave properly for all grazing angles. This model is

compared when the surface is slightly rough to the case when the
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gradient of the normal of the surface is approximated by 4/38z. In
effect this is a comparison between the full model and the coherent
component itself and the two obvious shortcomings are that the latter
does not incorporate any spectral information, nor does it apply to
other than low frequency cases. The Slope-Operator model is presented
using both the Fraunhofer and Fresnel phase approximation. The Fresnel
case is more complicated and presents no more information than the
Fraunhofer model in the farfield. 1In principle the Fraunhofer case
will diverge in the specular direction if no source beampattern is
used. This is because the integral over the ensonified area is assumed
to be the same as the integral between minus and plus infinity, since
the integrand with a Gaussian beampattern restricts significant
contributions to the ensonified area. The Fresnel approximation
presented in this study is derived using the binomial expansion. This
alternative is admittedly poor when compared to a power series
expansion in the phase but is considerably easier to implement.

Lastly, the MSP and TPM are effectively merged in the Composite-
Roughness Model. It is rather easy to implement and offers good
results when the surface spectra can be divided into two distinct
regimes. However, the model is very sensitive to the choice of
spectral partitioning when it is not apparent where the division in the
spectrum is to be made.

Expressions for the covariance and intensity were developed. The

coherent component of the intensity is shown to be a good estimator of
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surface roughness. Spectral content turns up in the incoherent
component. The covariance of the field is shown to be analogous to the
mutual covariance quantity whereas the intensity is the same as the
self-covariance.

No attempt was made to conduct an in-depth coherence study, but
several examples were provided so that the models can be compared and
some qualitative features of coherence calculations can be highlighted.
The coherence is shown to drop with increasing beamwidth and frequency.
This feature is useful in interferometric partial coherence studies.
When the Fraunhofer phase approximation is used, the coherence phase is
determined solely by the wavenumber times the difference in magnitude
of the distances between the surface and the two receivers. The point
was made that the horizontal coherence tends to vary very little
compared to the vertical coherence because the random processes
considered are a function of vertical coordinates. Coherence is a good
estimator of source localization and it provides considerable spectral

information.

Although partial coherence is a well-developed theory in the field
of optics, in acoustics, a comprehensive theory encompassing the
fundamental notions is yet to be formulated. The acoustics community

would undoubtedly welcome a monograph in this area.
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In optical coherence studies, rapidity of phase fluctuations is
the primary challenge, whereas in acoustics the difficulty is that near
perfect shadows are unattainable in an important frequency range.

These aspects, along with the distinctly different near-field
characteristics and the polarization, must be dealt with differently in
acoustics.

Reliable experimental data on coherence measurements involving
Gaussian surfaces as well as the ocean surface is needed in order to
make an assessment of the validity of the several models presented in
this study. Exact numerical evaluation of equations (2.1l) and (2.2)
would permit an analysis of the validity and interaction of the many
assumptions and approximations made in this study, as well as a means
of comparing the two equations for similarity in results. A difficult
but necessary project is the measurement of the ocean spectra under
more controlled and consistent conditions. The tabulation of the
surface autocorrelation could be performed as once did Fortuin and
deBoer (12), Latta (45), and Mellen (46) with the outdated Roll-Fisher
and Neumann-Pierson spectra.

Time dependence can be introduced in the problem, so that a model
for spatial and temporal covariance can be formulated. Time coherence
would enable the determination of finite spectral width of the
scattering surface and surface movement, in addition to surface

autocorrelation "movement." The directional spectrum and full

geometric implementation would be most useful in this case.
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A logical and extremely useful continuance of this work would )

@

AR

be: (1) the quantitative analysis of the sensitivity of the models -

LAERE Y
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to field Y

)
fluctuations, (2) the importance of higher-order multiple scatter
terms to coherence calculations, (3) the contribution of multiple
scatter to field flucaticns, and (4) the development of covariant
expressions that are valid in the near-field.

Derivation of expressions for higher-order moments (which are

less sensitive to inhomogeneities in the media) is required for a
theory of partial coherence, particularly if the general theory
for Gaussian as well as non-Gaussian surfaces is formulated.
Though higher order moments do not provide any new information if

the surface is Gaussian, they do so, however, for non-Gaussian

Ry

surfaces. The theory underlying non-Gaussian surface statistics

l.. l"
s
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~

can be found in Beckmann’s paper (38).
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APPENDIX

b - -

THE PIERSON-STACY SPECTRUM

Py

Y

e T

rL 2
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The non-directional ocean wavenumber elevation spectrum is

I&l

' Ky

included here for convenience. This summary has been extracted word

" for word from a summary prepared by McCammon (48) on the subject of the
5
! Pierson-Stacy (42) Reports.
D)
: This wavenumber elevation spectra is non-directional with the
L]
-
units of cm® and is related to the RMS waveheight by
i
. ©
i <0?> = [ W(K)dK. (A.1)
o
>
\I
: The spectral equations for each region are
.
B (1) Pierson Moskowitz region
: W,(K) = a exp[-B/K?]/(2K?). (a.2) R
L ::C;-\:
O
2) Stacy region MG
" (2) y reg ol
1/2 172 ®
N Wg(K) = (2.04x105+1.02x10%Ux)exp(-79.2K 1/K (A.3) G
K u, (A%
N (3) Kitaigorodskii region .:q’
o~ *A
M 1/2,5/2 adigl
W, (K) = a/(28°" "K' 7). (A.4)
A,
ﬁ: (4) Leykin-Rosenberg range
2
vy Wy (K) = W, (K;) (K/K,y) 9. (A.5)
R
N
W
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t.‘. o ,..{~’ lf.‘-‘.'nf'\:f,;..{g';- A "’.‘ " 'W;J_‘ re "-‘-;J. '-F.;" :.F R LI :.‘- L "-.:_q “ '.h\-.l ‘.--'*I\'.! N ;_i ] \-n\'n WO IJ.ﬁ*\ \’ y



Y p ol W,FJJ‘J J‘--\\\x >.«¢ LU T T I J-.Ar._.if T _ e
T o s WLk M el ef e
; vﬂﬁﬁfﬂxv‘ T B g T VL A SR LA R T N (N
.mvhnutqf& v..--.n-\;-.l.- A SR AL I VLI T 35 SRR AT A S TV e [Pa e o P DY v -

149

an
o

» » . .
O ¢ 1)y O ~/~ w10 o -
©F g0y 00y LS
—

T 00 o) ST . g7y €
A

—4 4 4

=

An,: !,eé
ﬂu....,ﬁ ...Tﬁﬁuﬁ_
[ 4 .

] » M ’ . .
O OO O et N

5
IS)
9]
v
[s %
0
[#]
o
¢y rd
(=] “
— 3
<
: ~—
kv 3
LT 2N " ’
SURURYR o "
—4 0
-4 O3 gy <F U\ O t~ DO . m
= o
= w
—e =
~— 3
ne
(cd c
(R0 o]
= n
=2 e
E P
>
=C
=

Figure A.1l

.rs: VULIIJS NULLVAS L YJUWIINIAVM

-A_&-.x

PO

{A‘

-,

S AT AT N
<

~

LA -
NN

2

T T "y
LA [
s

’

v

>

“,
A,

oy,
ala

ok

N A

AR

w, Co
-ﬁ\._'

Ly

RV

v
Y

-

PO N NG

o

Al

LV L RV



150 ®
=

(5) Mitsuyasu-Honda range ®

, W, (K) = 0.875(27)° 1 (1437Kk2) /(g P 1 2 (kK3 ) (PTIIIZ R

(A.6) e

(6) Cox viscous cutoff range f:*;

Wy (K) = 7.04x107° UxS/KO. (A.7) B

where a - 8.1x10°° Q
B - 0.76 g2/ut | o

qQ = 51.71/Ux2, “
)

P - 5.0 - loglo[U*], =
ke

r = 7.58x10°% | o

g =  980.

':‘x:,v)'.;':':“:

oY b
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‘\,’j“ Spys @
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These regions are linked together in K space as

)
5’

A

1 W, (K) O0<K<K;

N

Wg (K) Kj <K<K, °
max { Ux > 35.8 else use =
w1 (K) wl (K) ty

Ws (K) K, <K<K,
W(K)= 4 max{ Uy > 75.76 else use o
W, (K) W, (K)

N v
XA
%

Wy (K) K, <K<K,

W, (K) K, >K
Wy (K)
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where

Ky =  0.702g/U 2,

K, = 5L.71/Us?2,
K, =  0.359,
K, =  0.942,

U19 - wind speed at 19.5 m,

Ux - friction velocity obtained from the equations,

z
Clld

U, = Ux 1In(z.z45)/0.4,

<

f?::"l
’

2e s @

Zo = 0.684/Usx + 4.28x10 °Ux? - 0.0443.

NS
6?\33
v

-l
[y

! The units of these equations are CGS, W(K) is given in cm3, K in

g
o
X

-1
cm U19 in cm/sec.

w
z
o

e
ﬁ??ﬁ
Al 4

n \"‘-"n
[ Y
A s

" g
r e« .

1 !: <y ';"f '
W .‘»l

R e 4
%

e
3
.
’

P

PN A
E)

s

A

.

-::7

T J

/\«".’sf‘: WA

A IC IR A
L Y T

\

’ -, -y - - - - » L] SRt T TR W et e T AR e T O N W N i A LA
:"" v- N ,'-.' ,.v \ l‘lyﬂxl' )‘ \w n A » . \ -.\ | Sl L% ._ n‘v ..) f.'.»“,"f '_\’ e '._ -




et e R T Y
.‘L*A "A‘_{:"A -':fL f. - .A .-n ---., ":"?&



